Metabolic acidosis has dual effects on sodium handling by rat kidney

Author:

Faroqui Somia,Sheriff Sulaiman,Amlal Hassane

Abstract

Chronic metabolic acidosis (CMA) is associated with decreased NaCl reabsorption in the proximal tubule (PT). However, the effect of CMA on Na+transport in the distal tubule (DT) and collecting duct (CD) is poorly understood. Rats were placed in metabolic cages and had access to water (control), 0.28 M NH4Cl, or 0.28 M KCl solutions in a pair-feeding protocol for 5 days (5d). Metabolic acidosis developed within 24 h in NH4Cl-, but not in KCl-loaded rats. Interestingly, NH4Cl- but not KCl-loaded rats exhibited a significant natriuresis after 24 h of treatment. Urinary Na+excretion increased from 1.94 to 2.97 meq/24 h ( P < 0.001) and returned to below baseline level (1.67 meq/l) after 5d of CMA. The protein abundance of the cortical Na-Cl cotransporter (NCC) remained unchanged at 24 h, but increased significantly ( P < 0.01) after 5d of CMA. The protein abundance of α-, β-, and γ-subunits of the epithelial Na+channel (ENaC) in the cortex decreased sharply during the first 24 h and then returned to baseline levels after 5d of CMA. Interestingly, Sgk1 expression decreased after 24 h (−31%, P < 0.05) and then returned to baseline after 5d of CMA. Nedd4–2 expression was not altered during CMA. CMA enhanced serum aldosterone levels by 54% and increased the expression of aldosterone synthase in the adrenal gland by 134% after 5d of CMA. In conclusion, metabolic acidosis has dual effects on urinary Na+excretion. The early natriuresis results from decreased Na+reabsorption in the PT and Sgk1-related decreased ENaC activity in the DT and CD. Aldosterone-induced upregulation of NCC, Sgk1, and ENaC likely contributes to the antinatriuretic phase of metabolic acidosis. This adaptation prevents Na+wasting and volume depletion during chronic acid insult.

Publisher

American Physiological Society

Subject

Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3