Mechanoregulation of intracellular Ca2+concentration is attenuated in collecting duct of monocilium-impairedorpkmice

Author:

Liu Wen,Murcia Noel S.,Duan Yi,Weinbaum Sheldon,Yoder Bradley K.,Schwiebert Erik,Satlin Lisa M.

Abstract

Autosomal recessive polycystic kidney disease (ARPKD) is characterized by the progressive dilatation of collecting ducts, the nephron segments responsible for the final renal regulation of sodium, potassium, acid-base, and water balance. Murine models of ARPKD possess mutations in genes encoding cilia-associated proteins, including Tg737 in orpk mice. New findings implicate defects in structure/function of primary cilia as central to the development of polycystic kidney disease. Our group (Liu W, Xu S, Woda C, Kim P, Weinbaum S, and Satlin LM, Am J Physiol Renal Physiol 285: F998–F1012, 2003) recently reported that increases in luminal flow rate in rabbit collecting ducts increase intracellular Ca2+concentration ([Ca2+]i) in cells therein. We thus hypothesized that fluid shear acting on the apical membrane or hydrodynamic bending moments acting on the cilium increase renal epithelial [Ca2+]i. To further explore this, we tested whether flow-induced [Ca2+]itransients in collecting ducts from mutant orpk mice, which possess structurally abnormal cilia, differ from those in controls. Isolated segments from 1- and 2-wk-old mice were microperfused in vitro and loaded with fura 2; [Ca2+]iwas measured by digital ratio fluorometry before and after the rate of luminal flow was increased. All collecting ducts responded to an increase in flow with an increase in [Ca2+]i, a response that appeared to be dependent on luminal Ca2+entry. However, the magnitude of the increase in [Ca2+]iin 2- but not 1-wk-old mutant orpk animals was blunted. We speculate that this defect in mechano-induced Ca2+signaling in orpk mice leads to aberrant structure and function of the collecting duct in ARPKD.

Publisher

American Physiological Society

Subject

Physiology

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3