Targeting renal macrophage accumulation via c-fms kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney

Author:

Ma Frank Y.,Liu Jian,Kitching A. Richard,Manthey Carl L.,Nikolic-Paterson David J.

Abstract

The role of macrophages in promoting interstitial fibrosis in the obstructed kidney is controversial. Macrophage depletion studies in the unilateral ureter obstruction (UUO) model have produced opposing results, presumably reflecting the subtleties of the individual depletion methods used. To address this question, we targeted the macrophage colony-stimulating factor receptor, c- fms, which is uniquely expressed by cells of the monocyte/macrophage lineage. Administration of 5, 12.5, or 30 mg/kg (bid) of a selective inhibitor of c- fms kinase activity (fms-I) resulted in a dose-dependent inhibition of renal macrophage accumulation in the rat UUO model. This was due to inhibition of local macrophage proliferation in the obstructed kidney and, at higher doses, to depletion of circulating blood monocytes. To determine the contribution of macrophages to renal pathology in the obstructed kidney, groups of animals were treated with 30 mg/kg fms-I and killed 3, 7, or 14 days later. Complete inhibition of renal macrophage accumulation prevented upregulation of the macrophage-associated proinflammatory mediators, tumor necrosis factor (TNF)-α and matrix metalloproteinase-12, and significantly reduced tubular apoptosis. Macrophage depletion caused a minor reduction of interstitial myofibroblast accumulation and deposition of interstitial collagen IV at day 3, but no difference was seen in renal fibrosis on day 7 or 14. Similarly, the upregulation of collagen IV, fibronectin, transforming growth factor-β1 and connective tissue growth factor mRNA levels on day 7 and 14 in the obstructed kidney was unaffected by macrophage depletion. In conclusion, c- fms blockade was shown to selectively prevent interstitial macrophage accumulation and to reduce tubular apoptosis in the obstructed kidney, but it had no significant impact on the development of interstitial fibrosis.

Publisher

American Physiological Society

Subject

Physiology

Reference30 articles.

1. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation

2. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair

3. Molecular basis of renal fibrosis

4. Immunological Consequences of Apoptotic Cell Phagocytosis

5. Erwig LP, Kluth DC, Walsh GM, Rees AJ. Initial cytokine exposure determines function of macrophages and renders them unresponsive to other cytokines. J Immunol 161: 1983–1988, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3