Direct demonstration of tubular fluid flow sensing by macula densa cells

Author:

Sipos Arnold12,Vargas Sarah1,Peti-Peterdi János12

Affiliation:

1. Departments of Physiology and Biophysics and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California; and

2. Hungarian Academy of Sciences, Research Group for Pediatrics and Nephrology, and Institute of Pathophysiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary

Abstract

Macula densa (MD) cells in the cortical thick ascending limb (cTAL) detect variations in tubular fluid composition and transmit signals to the afferent arteriole (AA) that control glomerular filtration rate [tubuloglomerular feedback (TGF)]. Increases in tubular salt at the MD that normally parallel elevations in tubular fluid flow rate are well accepted as the trigger of TGF. The present study aimed to test whether MD cells can detect variations in tubular fluid flow rate per se. Calcium imaging of the in vitro microperfused isolated JGA-glomerulus complex dissected from mice was performed using fluo-4 and fluorescence microscopy. Increasing cTAL flow from 2 to 20 nl/min (80 mM [NaCl]) rapidly produced significant elevations in cytosolic Ca2+concentration ([Ca2+]i) in AA smooth muscle cells [evidenced by changes in fluo-4 intensity (F); F/F0= 1.45 ± 0.11] and AA vasoconstriction. Complete removal of the cTAL around the MD plaque and application of laminar flow through a perfusion pipette directly to the MD apical surface essentially produced the same results even when low (10 mM) or zero NaCl solutions were used. Acetylated α-tubulin immunohistochemistry identified the presence of primary cilia in mouse MD cells. Under no flow conditions, bending MD cilia directly with a micropipette rapidly caused significant [Ca2+]ielevations in AA smooth muscle cells (fluo-4 F/F0: 1.60 ± 0.12) and vasoconstriction. P2 receptor blockade with suramin significantly reduced the flow-induced TGF, whereas scavenging superoxide with tempol did not. In conclusion, MD cells are equipped with a tubular flow-sensing mechanism that may contribute to MD cell function and TGF.

Publisher

American Physiological Society

Subject

Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolving concepts of TRPV4 in controlling flow-sensitivity of the renal nephron;Role of TRPV4 Channels in Different Organ Systems;2022

2. Neuron-like function of the nephron central command;2021-12-07

3. A new view of macula densa cell protein synthesis;American Journal of Physiology-Renal Physiology;2021-12-01

4. Differentiation of Juxtaglomerular Apparatus Cells in Developing Nephrons in BALB /c Type Mouse Embryos;Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi;2021-08-04

5. A new view of macula densa cell microanatomy;American Journal of Physiology-Renal Physiology;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3