Affiliation:
1. Department of Cell Biology, University of Aarhus, Denmark.
Abstract
The present study was undertaken to determine the time courses and kinetics of the subcellular processing of 125I-insulin in isolated and in vitro perfused proximal tubules. Morphometric analysis demonstrated well-preserved ultrastructure after 90 min of perfusion. After luminal perfusion for 90 min the absorption was constant with time and reached steady state within 5 min (177 +/- 7 fg.min-1.mm-1). Also the hydrolysis rate and tubular accumulation rate were constant and averaged 84 +/- 8 and 93 +/- 10 fg.min-1.mm-1, respectively. Free 125I appeared already within 5 min of perfusion and reached steady state within 10 min. From proximal tubules perfused with 125I-insulin for 30 min and chased for 60 min, a compartmental analysis revealed two compartments; half time (t1/2) for delivery of insulin to the lysosomes was determined to be 8.5 min, and t1/2 for lysosomal degradation was 72 min. The results demonstrated that internalization by endocytic invaginations, incorporation in endocytic vacuoles, fusion with lysosomes, and hydrolysis were rapid processes and reached maximum rates within few minutes. A significant transtubular transport of insulin to the peritubular compartment was determined to be a constant rate of 11.2 +/- 0.7 fg.min-1.mm-1. Perfusion of tubules with insulin at high concentrations in the perfusate revealed that the transport was dependent on the absorbed amount and not on the perfused load, compatible with transport through the cells and not via a paracellular mechanism. The intactness of the tight junctions was supported by the following: 1) [14C]inulin leak did not increase with time and 2) enzyme-free intercellular spaces were evident after perfusion for only 5 min with microperoxidase (mol wt of 1,700). The transported 125I-insulin was trichloroacetic acid precipitable and immunoprecipitable.
Publisher
American Physiological Society
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献