Time course and kinetics of proximal tubular processing of insulin

Author:

Nielsen S.1

Affiliation:

1. Department of Cell Biology, University of Aarhus, Denmark.

Abstract

The present study was undertaken to determine the time courses and kinetics of the subcellular processing of 125I-insulin in isolated and in vitro perfused proximal tubules. Morphometric analysis demonstrated well-preserved ultrastructure after 90 min of perfusion. After luminal perfusion for 90 min the absorption was constant with time and reached steady state within 5 min (177 +/- 7 fg.min-1.mm-1). Also the hydrolysis rate and tubular accumulation rate were constant and averaged 84 +/- 8 and 93 +/- 10 fg.min-1.mm-1, respectively. Free 125I appeared already within 5 min of perfusion and reached steady state within 10 min. From proximal tubules perfused with 125I-insulin for 30 min and chased for 60 min, a compartmental analysis revealed two compartments; half time (t1/2) for delivery of insulin to the lysosomes was determined to be 8.5 min, and t1/2 for lysosomal degradation was 72 min. The results demonstrated that internalization by endocytic invaginations, incorporation in endocytic vacuoles, fusion with lysosomes, and hydrolysis were rapid processes and reached maximum rates within few minutes. A significant transtubular transport of insulin to the peritubular compartment was determined to be a constant rate of 11.2 +/- 0.7 fg.min-1.mm-1. Perfusion of tubules with insulin at high concentrations in the perfusate revealed that the transport was dependent on the absorbed amount and not on the perfused load, compatible with transport through the cells and not via a paracellular mechanism. The intactness of the tight junctions was supported by the following: 1) [14C]inulin leak did not increase with time and 2) enzyme-free intercellular spaces were evident after perfusion for only 5 min with microperoxidase (mol wt of 1,700). The transported 125I-insulin was trichloroacetic acid precipitable and immunoprecipitable.

Publisher

American Physiological Society

Subject

Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3