Insulin uptake across the luminal membrane of the rat proximal tubule in vivo and in vitro

Author:

Kolman Pavel,Pica Angelo,Carvou Nicolas,Boyde Alan,Cockcroft Shamshad,Loesch Andrew,Pizzey Arnold,Simeoni Mariadelina,Capasso Giovambattista,Unwin Robert J.

Abstract

We visualized insulin uptake in vivo across the apical membrane of the rat proximal tubule (PT) by confocal microscopy; we compared it with in vitro findings in a rat PT cell line (WKPT) using fluorescence microscopy and flow cytometry. Surface tubules were observed in vivo with a 633-nm single laser-illuminated real-time video-rate confocal scanning microscope in upright configuration for optical sectioning below the renal capsule. Fields were selected containing proximal and distal tubules; Cy5-labeled insulin was injected twice (the second time after ∼140 min) into the right jugular vein, and the fluorescence signal (at 650–670 nm) was recorded. Fluorescence was detected almost immediately at the brush-border membrane (BBM) of PT cells only, moving inside cells within 30–40 min. As a measure of insulin uptake, the ratio of the fluorescence signal after the second injection to the first doubled (ratio: 2.11 ± 0.26, mean ± SE, n = 10), indicating a “priming,” or stimulating, effect of insulin on its uptake mechanism at the BBM. This effect did not occur after pretreatment with intravenous lysine (ratio: 1.03 ± 0.07, n = 6; P < 0.01). Cy2- or Cy3-labeled insulin uptake in a PT cell line in vitro was monitored by 488-nm excitation fluorescence microscopy using an inverted microscope. Insulin localized toward the apical membrane of these cells. Semiquantitative analysis of insulin uptake by flow cytometry also demonstrated a priming effect (upregulation) on insulin internalization in the presence of increasing amounts of insulin, as was observed in vivo; moreover, this effect was not seen with, or affected by, the similarly endocytosed ligand β2-glycoprotein.

Publisher

American Physiological Society

Subject

Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3