Nitric oxide synthase inhibition causes acute increases in glomerular permeability in vivo, dependent upon reactive oxygen species

Author:

Dolinina Julia1,Sverrisson Kristinn1,Rippe Anna1,Öberg Carl M.1ORCID,Rippe Bengt1

Affiliation:

1. Department of Nephrology, Lund University, Lund, Sweden

Abstract

There is increasing evidence that the permeability of the glomerular filtration barrier (GFB) is partly regulated by a balance between the bioavailability of nitric oxide (NO) and that of reactive oxygen species (ROS). It has been postulated that normal or moderately elevated NO levels protect the GFB from permeability increases, whereas ROS, through reducing the bioavailability of NO, have the opposite effect. We tested the tentative antagonism between NO and ROS on glomerular permeability in anaesthetized Wistar rats, in which the left ureter was cannulated for urine collection while simultaneously blood access was achieved. Rats were systemically infused with either l-NAME or l-NAME together with the superoxide scavenger Tempol, or together with l-arginine or the NO-donor DEA-NONOate, or the cGMP agonist 8-bromo-cGMP. To measure glomerular sieving coefficients (theta, θ) to Ficoll, rats were infused with FITC-Ficoll 70/400 (mol/radius 10–80 Å). Plasma and urine samples were analyzed by high-performance size-exclusion chromatography (HPSEC) for determination of θ for Ficoll repeatedly during up to 2 h. l-NAME increased θ for Ficoll70Å from 2.27 ± 1.30 × 10−5 to 8.46 ± 2.06 × 10−5 ( n = 6, P < 0.001) in 15 min. Tempol abrogated these increases in glomerular permeability and an inhibition was also observed with l-arginine and with 8-bromo-cGMP. In conclusion, acute NO synthase inhibition in vivo by l-NAME caused rapid increases in glomerular permeability, which could be reversed by either an ROS antagonist or by activating the guanylyl cyclase-cGMP pathway. The data strongly suggest a protective effect of NO in maintaining normal glomerular permeability in vivo.

Funder

Vetenskapsrådet (Swedish Research Council)

Hjärt-Lungfonden (Swedish Heart-Lung Foundation)

ALF funding, Lund university (Sweden)

Skane County Research Funds (Sweden)

Publisher

American Physiological Society

Subject

Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3