K+-induced natriuresis is preserved during Na+ depletion and accompanied by inhibition of the Na+-Cl− cotransporter

Author:

van der Lubbe Nils1,Moes Arthur D.1,Rosenbaek Lena L.2,Schoep Sharon1,Meima Marcel E.1,Danser Alexander H. J.1,Fenton Robert A.2,Zietse Robert1,Hoorn Ewout J.1

Affiliation:

1. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands; and

2. Center for Interactions of Proteins in Epithelial Transport, Department of Biomedicine, Aarhus University, Aarhus, Denmark

Abstract

During hypovolemia and hyperkalemia, the kidneys defend homeostasis by Na+ retention and K+ secretion, respectively. Aldosterone mediates both effects, but it is unclear how the same hormone can evoke such different responses. To address this, we mimicked hypovolemia and hyperkalemia in four groups of rats with a control diet, low-Na+ diet, high-K+ diet, or combined diet. The low-Na+ and combined diets increased plasma and kidney ANG II. The low-Na+ and high-K+ diets increased plasma aldosterone to a similar degree (3-fold), whereas the combined diet increased aldosterone to a greater extent (10-fold). Despite similar Na+ intake and higher aldosterone, the high-K+ and combined diets caused a greater natriuresis than the control and low-Na+ diets, respectively ( P < 0.001 for both). This K+-induced natriuresis was accompanied by a decreased abundance but not phosphorylation of the Na+-Cl cotransporter (NCC). In contrast, the epithelial Na+ channel (ENaC) increased in parallel with aldosterone, showing the highest expression with the combined diet. The high-K+ and combined diets also increased WNK4 but decreased Nedd4-2 in the kidney. Total and phosphorylated Ste-20-related kinase were also increased but were retained in the cytoplasm of distal convoluted tubule cells. In summary, high dietary K+ overrides the effects of ANG II and aldosterone on NCC to deliver sufficient Na+ to ENaC for K+ secretion. K+ may inhibit NCC through WNK4 and help activate ENaC through Nedd4-2.

Publisher

American Physiological Society

Subject

Physiology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3