Author:
Ge Yuqiang,Ahn Dowahn,Stricklett Peter K.,Hughes Alisa K.,Yanagisawa Masashi,Verbalis Joseph G.,Kohan Donald E.
Abstract
In vitro studies suggest that endothelin-1 (ET-1) inhibits vasopressin (AVP)-stimulated water permeability in the collecting duct (CD). To evaluate the role of CD-derived ET-1 in regulating renal water metabolism, the ET-1 gene was selectively disrupted in the CD (CD ET-1 KO). During normal water intake, urinary osmolality (Uosm), plasma Na concentration, urine volume, and renal aquaporin-2 (AQP2) levels were unchanged, but plasma AVP concentration was reduced in CD ET-1 KO animals. CD ET-1 KO mice had impaired ability to excrete an acute, but not a chronic, water load, and this was associated with increased CD ET-1 mRNA in control, but not CD ET-1 KO, mice. In response to continuous infusion of 1-desamino-8-d-arginine vasopressin, CD ET-1 KO mice had greater increases in Uosm, V2 and AQP2 mRNA, and phosphorylation of AQP2. CD suspensions from CD ET-1 KO mice had enhanced AVP- and forskolin-stimulated cAMP accumulation. These data indicate that CD ET-1 KO increases renal sensitivity to the urinary concentrating effects of AVP and suggest that ET-1 functions as a physiological autocrine regulator of AVP action in the CD.
Publisher
American Physiological Society
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献