In mpkCCD cells, long-term regulation of aquaporin-2 by vasopressin occurs independent of protein kinase A and CREB but may involve Epac

Author:

Kortenoeven Marleen L. A.1,Trimpert Christiane1,van den Brand Michiel1,Li Yuedan1,Wetzels Jack F. M.2,Deen Peter M. T.1

Affiliation:

1. Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and

2. Department of Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Abstract

Urine concentration involves the hormone vasopressin (AVP), which stimulates cAMP production in renal principal cells, resulting in translocation and transcription of aquaporin-2 (AQP2) water channels, greatly increasing the water permeability, leading to a concentrated urine. As cAMP levels decrease shortly after AVP addition, whereas AQP2 levels still increase and are maintained for days, we investigated in the present study the mechanism responsible for the AQP2 increase after long-term 1-desamino-8-d-arginine vasopressin (dDAVP) application using mouse collecting duct (mpkCCD) cells. While 30 min of dDAVP incubation strongly increased cAMP, cAMP was lower with 1 day and was even further reduced with 4 days of dDAVP, although still significantly higher than in control cells. One day of dDAVP incubation increased AQP2 promoter-dependent transcription, which was blocked by the protein kinase A (PKA) inhibitor H89. Moreover, phosphorylation of the cAMP-responsive element binding protein (CREB) and CRE-dependent transcription was observed after short-term dDAVP stimulation. With 4 days of dDAVP, AQP2 transcription remained elevated, but this was not blocked by H89, and CRE-dependent transcription and CREB phosphorylation were not increased. Exchange factor directly activated by cAMP (Epac) 1 and 2 were found to be endogenously expressed in mpkCCD cells. Application of dDAVP increased the expression of Epac1, while Epac2 was reduced. Incubation with a specific Epac activator after dDAVP pretreatment increased both AQP2 abundance and transcription compared with cells left unstimulated the last day. In conclusion, the PKA-CRE pathway is involved in the initial rise in AQP2 levels after dDAVP stimulation but not in the long-term effect of dDAVP. Instead, long-term regulation of AQP2 may involve the activation of Epac.

Publisher

American Physiological Society

Subject

Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epac induces ryanodine receptor-dependent intracellular and inter-organellar calcium mobilization in mpkCCD cells;Frontiers in Physiology;2023-08-29

2. V2 vasopressin receptor mutations: future personalized therapy based on individual molecular biology;Frontiers in Endocrinology;2023-05-24

3. The transcription factor Foxi1 promotes expression of V-ATPase and Gpr116 in M-1 cells;American Journal of Physiology-Renal Physiology;2023-03-01

4. Aquaporins in Edema;Advances in Experimental Medicine and Biology;2023

5. Expression Regulation and Trafficking of Aquaporins;Advances in Experimental Medicine and Biology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3