Aquaporin-2 transfection of Madin-Darby canine kidney cells reconstitutes vasopressin-regulated transcellular osmotic water transport.

Author:

Deen P M,Rijss J P,Mulders S M,Errington R J,van Baal J,van Os C H

Abstract

Water transport across the mammalian collecting tubule is regulated by vasopressin-dependent aquaporin-2 insertion into and retrieval from the apical cell membrane. To establish a cell line that properly expresses aquaporin-2 and its hormone-dependent shuttling, Madin-Darby canine kidney cells were stably transfected with an aquaporin-2 expression construct. Cells of a representative clone (wild-type 10 [WT-10]) were grown on semipermeable supports, and transcellular osmotic water permeability (Pf; in microm/s +/- SEM) was measured. The basal Pf of WT-10 cells, which was lowered with indomethacin, increased from 10.6 +/- 0.8 to 35.7 +/- 1.2 upon incubation with 1-desamino-8-D-arginine vasopressin (dDAVP). This increase coincided with the translocation of aquaporin-2 from an intracellular compartment to the apical membrane. The Pf of untransfected cells (6.5 +/- 0.8) was unchanged by dDAVP. Kinetic studies with WT-10 cells revealed that maximal Pf was obtained within 30 min after dDAVP addition, which remained elevated for at least 90 min. Intracellular cAMP levels peaked within 5 min after dDAVP admission and decreased to basal levels within 45 min. After preincubation with dDAVP, the Pf decreased within 15 min after dDAVP washout and returned to basal levels within 75 min. In conclusion, the WT-10 cells mimic the vasopressin-regulated transcellular water transport and aquaporin-2 translocation as found in collecting duct cells to a great extent, and therefore constitute an in vitro cell model that can be used to study the regulation of transcellular water transport in detail and provide a simplified test system for screening putative aquaporin-2 blockers.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3