Impaired leg vasodilation during dynamic exercise in healthy older women

Author:

Proctor David N.,Koch Dennis W.,Newcomer Sean C.,Le Khoi U.,Leuenberger Urs A.

Abstract

The purpose of the present study was to test the hypothesis that leg blood flow responses during leg cycle ergometry are reduced with age in healthy non-estrogen-replaced women. Thirteen younger (20-27 yr) and thirteen older (61-71 yr) normotensive, non-endurance-trained women performed both graded and constant-load bouts of leg cycling at the same absolute exercise intensities. Leg blood flow (femoral vein thermodilution), mean arterial pressure (MAP; radial artery), mean femoral venous pressure, cardiac output (acetylene rebreathing), and blood O2 contents were measured. Leg blood flow responses at light workloads (20-40 W) were similar in younger and older women. However, at moderate workloads (50-60 W), leg blood flow responses were significantly attenuated in older women. MAP was 20-25 mmHg higher ( P < 0.01) in the older women across all work intensities, and calculated leg vascular conductance (leg blood flow/estimated leg perfusion pressure) was lower ( P < 0.05). Exercise-induced increases in leg arteriovenous O2 difference and O2 extraction were identical between groups ( P > 0.6). Leg O2 uptake was tightly correlated with leg blood flow across all workloads in both subject groups ( r2 = 0.80). These results suggest the ability of healthy older women to undergo limb vasodilation in response to submaximal exercise is impaired and that the legs are a potentially important contributor to the augmented systemic vascular resistance seen during dynamic exercise in older women.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aging in females has minimal effect on changes in celiac artery blood flow during dynamic light-intensity exercise;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2024-07-01

2. Effects of aging and endurance exercise training on cardiorespiratory fitness and cardiac structure and function in healthy midlife and older women;Journal of Applied Physiology;2023-12-01

3. Exercise Physiology and Cardiopulmonary Exercise Testing;Seminars in Respiratory and Critical Care Medicine;2023-07-10

4. Age-Related Changes in Skeletal Muscle Oxygen Utilization;Journal of Functional Morphology and Kinesiology;2022-10-14

5. Acute heat exposure improves microvascular function in skeletal muscle of aged adults;American Journal of Physiology-Heart and Circulatory Physiology;2022-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3