Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans

Author:

Ainslie P. N.1,Lucas S. J. E.23,Fan J.-L.245,Thomas K. N.2,Cotter J. D.3,Tzeng Y. C.6,Burgess Keith R.7

Affiliation:

1. School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada;

2. Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand;

3. School of Physical Education, University of Otago, Dunedin, New Zealand;

4. Institute of Movement Sciences and Sports Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; and

5. Lemanic Doctoral School of Neuroscience, University of Geneva, Geneva, Switzerland

6. Cardiovascular Systems Laboratory, University of Otago, Dunedin, New Zealand;

7. Department of Medicine, University of Sydney, Sydney, New South Wales, Australia;

Abstract

We sought to determine the influence of sympathoexcitation on dynamic cerebral autoregulation (CA), cerebrovascular reactivity, and ventilatory control in humans at high altitude (HA). At sea level (SL) and following 3–10 days at HA (5,050 m), we measured arterial blood gases, ventilation, arterial pressure, and middle cerebral blood velocity (MCAv) before and after combined α- and β-adrenergic blockade. Dynamic CA was quantified using transfer function analysis. Cerebrovascular reactivity was assessed using hypocapnia and hyperoxic hypercapnia. Ventilatory control was assessed from the hypercapnia and during isocapnic hypoxia. Arterial Pco2 and ventilation and its control were unaltered following blockade at both SL and HA. At HA, mean arterial pressure (MAP) was elevated ( P < 0.01 vs. SL), but MCAv remained unchanged. Blockade reduced MAP more at HA than at SL (26 vs. 15%, P = 0.048). At HA, gain and coherence in the very-low-frequency (VLF) range (0.02–0.07 Hz) increased, and phase lead was reduced (all P < 0.05 vs. SL). Following blockade at SL, coherence was unchanged, whereas VLF phase lead was reduced (−40 ± 23%; P < 0.01). In contrast, blockade at HA reduced low-frequency coherence (−26 ± 20%; P = 0.01 vs. baseline) and elevated VLF phase lead (by 177 ± 238%; P < 0.01 vs. baseline), fully restoring these parameters back to SL values. Irrespective of this elevation in VLF gain at HA ( P < 0.01), blockade increased it comparably at SL and HA (∼43–68%; P < 0.01). Despite elevations in MCAv reactivity to hypercapnia at HA, blockade reduced ( P < 0.05) it comparably at SL and HA, effects we attributed to the hypotension and/or abolition of the hypercapnic-induced increase in MAP. With the exception of dynamic CA, we provide evidence of a redundant role of sympathetic nerve activity as a direct mechanism underlying changes in cerebrovascular reactivity and ventilatory control following partial acclimatization to HA. These findings have implications for our understanding of CBF function in the context of pathologies associated with sympathoexcitation and hypoxemia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3