Contrasting effects of simulated microgravity with and without daily −Gx gravitation on structure and function of cerebral and mesenteric small arteries in rats

Author:

Lin Le-Jian1,Gao Fang1,Bai Yun-Gang1,Bao Jun-Xiang1,Huang Xiao-Feng2,Ma Jin1,Zhang Li-Fan1

Affiliation:

1. Department of Aerospace Physiology and Key Laboratory of Aerospace Medicine of Ministry of Education,

2. Central Laboratory, School of Basic Medicine, Fourth Military Medical University, Xi'an, China

Abstract

This study was designed to test the hypothesis that a 28-day tail suspension (SUS) could induce hypertrophy and enhanced myogenic and vasoconstrictor reactivity in middle cerebral arteries (MCAs), whereas atrophy and decreased myogenic and vasoconstrictor responses in mesenteric third-order arterioles (MSAs). Also, in addition to the functional enhancement in MCAs, structural changes in both kinds of arteries and functional decrement in MSAs could all be prevented by the intervention of daily 1-h dorsoventral (−Gx) gravitation by restoring to standing posture. To test this hypothesis, vessel diameters to pressure alterations and nonreceptor- and receptor-mediated agonists were determined using a pressure arteriograph with a procedure to measure in vivo length and decrease hysteresis of vessel segments and longitudinal middlemost sections of vessels fixed at maximally dilated state were examined using electron microscopy and histomorphometry. Functional studies showed that 28-day tail-suspended, head-down tilt (SUS) resulted in enhanced and decreased myogenic tone and vasoconstrictor responses, respectively, in MCAs and MSAs. Histomorphometric data revealed that SUS-induced hypertrophic changes in MCAs characterized by increases in thickness (T) and cross-sectional area (CSA) of the media and the number of vascular smooth-muscle-cell layers (NCL), whereas in MSAs, it induced decreases in medial CSA and T and NCL. Daily 1-h −Gx over 28 days can fully prevent these differential structural changes in both kinds of small arteries and the functional decrement in MSAs, but not the augmented myogenic tone and increased vasoreactivity in the MCAs. These findings have revealed special features of small resistance arteries during adaptation to microgravity with and without gravity-based countermeasure.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3