The OPG/RANKL/RANK system modulates calcification of common carotid artery in simulated microgravity rats by regulating NF-κB pathway

Author:

Liu Huan12,Ru Ning-Yu3,Cai Yue4,Lyu Qiang5,Guo Chi-Hua6,Zhou Ying6,Li Shao-Hua7,Cheng Jiu-Hua5,Chang Jin-Rui3,Ma Jin8,Su Xing-Li6

Affiliation:

1. Xi’an Medical University, Department of Basic Medicine, Xi'an, Shaanxi, China

2. Fourth Military Medical University, Department of Aerospace Physiology, Xi'an, China;

3. Xi’an Medical University, Department of Basic Medicine, Xi'an, China;

4. Fourth Military Medical University, Department of Cardiology, Xijing Hospital, Xi'an, China;

5. Fourth Military Medical University, Department of Aerospace Physiology, Xi'an, Shaanxi, China;

6. Xi’an Medical University, Department of Basic Medicine, Xi’an, China;

7. Fourth Military Medical University, 12644, Department of Aerospace Physiology, Xi'an, China;

8. Fourth Military Medical University, Department of Aerospace Physiology, Xi’an, China;

Abstract

Functional and structural adaptation of common carotid artery could be one of the important causes of postflight orthostatic intolerance after microgravity exposure, the mechanisms of which remain unclear. Recent evidence indicates that long-term spaceflight increases carotid artery stiffness, which might present a high risk to astronaut health and postflight working ability. Studies have suggested that vascular calcification is a common pathological change in cardiovascular diseases that is mainly manifested as an increase in vascular stiffness. Therefore, this study aimed to investigate whether simulated microgravity induces calcification of common carotid artery and to elucidate the underlying mechanisms. Four-week hindlimb-unweighted (HU) rats were used to simulate the deconditioning effects of microgravity on cardiovascular system. We found that simulated microgravity induced vascular smooth muscle cell (VSMC) osteogenic differentiation and medial calcification, increased receptor activator of nuclear factor κB ligand (RANKL) and RANK expression, and enhanced NF-κB activation in rat common carotid artery. In vitro activation of the RANK pathway with exogenous RANKL, a RANK ligand, increased RANK and osteoprotegerin (OPG) expression in HU rats. Moreover, the expression of osteogenic markers and activation of NF-κB in HU rats were further enhanced by exogenous RANKL but suppressed by the RANK inhibitor OPG-Fc. These results indicated that the OPG/RANKL/RANK system modulates VSMC osteogenic differentiation and medial calcification of common carotid artery in simulated microgravity rats by regulating NF-kB pathway.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3