Diabetes impairs exercise training-associated thioredoxin response and glutathione status in rat brain

Author:

Lappalainen Zekine,Lappalainen Jani,Oksala Niku K. J.,Laaksonen David E.,Khanna Savita,Sen Chandan K.,Atalay Mustafa

Abstract

Regular exercise plays an important preventive and therapeutic role in oxidative stress-associated diseases such as diabetes and its complications. Thiol antioxidants including thioredoxin (TRX) and glutathione (GSH) have a crucial role in controlling cellular redox status. In this study, the effects of 8 wk of exercise training on brain TRX and GSH systems, and antioxidant enzymes were tested in rats with or without streptozotocin-induced diabetes. We found that in untrained animals, the levels of TRX-1 (TRX1) protein and activity, and thioredoxin-interacting protein (TXNip) were similar in diabetic and nondiabetic animals. Exercise training, however, increased TRX1 protein in nondiabetic animals without affecting TXNip levels, whereas diabetes inhibited the effect of training on TRX1 protein and also increased TXNip mRNA. In addition, the proportion of oxidized glutathione (GSSG) to total GSH was increased in animals with diabetes, indicating altered redox status and possibly increased oxidative stress. Glutathione peroxidase-1 (GPX1) levels were not affected by diabetes or exercise training, although diabetes increased total GPX activity. Both diabetes and exercise training decreased glutathione reductase (GRD) activity and cytosolic superoxide dismutase (Cu,Zn-SOD) levels. Nevertheless, diabetes or training had no effect on Cu,Zn-SOD mRNA, Mn-SOD protein, total SOD activity, or catalase mRNA, protein, or activity. Our findings suggest that exercise training increases TRX1 levels in brain without a concomitant rise in TXNip, and that experimental diabetes is associated with an incomplete TRX response to training. Increased oxidative stress may be both a cause and a consequence of perturbed antioxidant defenses in the diabetic brain.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3