Vigorous exercise acutely changes platelet and B-lymphocyte CD39 expression

Author:

Coppola Antonino,Coppola Ludovico,dalla Mora Liliana,Limongelli Francesco M.,Grassia Antonio,Mastrolorenzo Luigia,Gombos Giorgio,Lucivero Giacomo

Abstract

CD39/ATP diphosphohydrolase is expressed on B lymphocytes, cytotoxic T lymphocytes, monocytes, platelets, and endothelial cells, and it has a critical role in the inhibition of platelet responsiveness. To determine whether strenuous exercise could acutely change expression of CD39 in platelets and lymphocytes, eight healthy sedentary men, 34 yr old (SD 7), and eight physically active men, 34 yr old (SD 6), performed graded upright cycle ergometry to volitional exhaustion. Blood samples collected both at baseline and after exercise test were employed to measure CD39 expression in platelets and lymphocytes. The percentage of circulating platelet-platelet aggregates, the “in vitro” ADP and collagen-induced platelet aggregation, and the expression of both platelet glycoprotein IIb-IIIa (PAC-1) and P-selectin (CD62) were also considered markers of platelet activation. After strenuous exercise, all subjects demonstrated significant platelet activation as judged by the increased percentage of platelet-platelet aggregates. The in vitro ADP-induced platelet aggregation and the expression of CD62P on ADP-stimulated platelets significantly increased in sedentary but not in active subjects. After exercise, all of the subjects showed a significant reduction of CD39 expression in platelet [sedentary: from 2.2 (SD 0.8) to 1.1% (SD 0.8), P = 0.008; active: from 0.6 (SD 0.2) to 0.35% (SD 0.1), P = 0.009] and an increase of CD39 expression in B lymphocytes [sedentary: from 47 (SD 13) to 60% (SD 11), P = 0.0039; active: from 46 (SD 11) to 59% (SD 11), P = 0.0038]. Taken together, these findings confirm the critical role of this ADPase in inhibition of platelet responsiveness, also suggesting a possible role of B lymphocytes in thromboregulation mechanism.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3