Attenuation of Ca2+ homeostasis, oxidative stress, and mitochondrial dysfunctions in diabetic rat heart: insulin therapy or aerobic exercise?

Author:

da Silva Márcia F.1,Natali Antônio J.2,da Silva Edson13,Gomes Gilton J.2,Teodoro Bruno G.4,Cunha Daise N. Q.2,Drummond Lucas R.2,Drummond Filipe R.2,Moura Anselmo G.2,Belfort Felipe G.2,de Oliveira Alessandro2,Maldonado Izabel R. S. C.1,Alberici Luciane C.4

Affiliation:

1. Departments of General Biology and

2. Physical Education, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil;

3. Department of Basic Sciences, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; and

4. Department of Physics and Chemistry, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil

Abstract

We tested the effects of swimming training and insulin therapy, either alone or in combination, on the intracellular calcium ([Ca2+]i) homeostasis, oxidative stress, and mitochondrial functions in diabetic rat hearts. Male Wistar rats were separated into control, diabetic, or diabetic plus insulin groups. Type 1 diabetes mellitus was induced by streptozotocin (STZ). Insulin-treated groups received 1 to 4 UI of insulin daily for 8 wk. Each group was divided into sedentary or exercised rats. Trained groups were submitted to swimming (90 min/day, 5 days/wk, 8 wk). [Ca2+]i transient in left ventricular myocytes (LVM), oxidative stress in LV tissue, and mitochondrial functions in the heart were assessed. Diabetes reduced the amplitude and prolonged the times to peak and to half decay of the [Ca2+]i transient in LVM, increased NADPH oxidase-4 (Nox-4) expression, decreased superoxide dismutase (SOD), and increased carbonyl protein contents in LV tissue. In isolated mitochondria, diabetes increased Ca2+ uptake, susceptibility to permeability transition pore (MPTP) opening, uncoupling protein-2 (UCP-2) expression, and oxygen consumption but reduced H2O2 release. Swimming training corrected the time course of the [Ca2+]i transient, UCP-2 expression, and mitochondrial Ca2+ uptake. Insulin replacement further normalized [Ca2+]i transient amplitude, Nox-4 expression, and carbonyl content. Alongside these benefits, the combination of both therapies restored the LV tissue SOD and mitochondrial O2 consumption, H2O2 release, and MPTP opening. In conclusion, the combination of swimming training with insulin replacement was more effective in attenuating intracellular Ca2+ disruptions, oxidative stress, and mitochondrial dysfunctions in STZ-induced diabetic rat hearts.

Funder

FundaÃ{section sign}ão de Amparo à Pesquisa do Estado de Minas Gerais

FundaÃ{section sign}ão de Amparo a Pesquisa do Estado de São Paulo

CNPq

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3