Acid-base balance in the developing marsupial: from ectotherm to endotherm

Author:

Andrewartha Sarah J.12,Cummings Kevin J.3,Frappell Peter B.12

Affiliation:

1. University of Tasmania, Hobart, Tasmania, Australia;

2. CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia; and

3. Department of Biomedical Sciences, University of Missouri, Columbia, Missouri

Abstract

Marsupial joeys are born ectothermic and develop endothermy within their mother's thermally stable pouch. We hypothesized that Tammar wallaby joeys would switch from α-stat to pH-stat regulation during the transition from ectothermy to endothermy. To address this, we compared ventilation (V̇e), metabolic rate (V̇o2), and variables relevant to blood gas and acid-base regulation and oxygen transport including the ventilatory requirements (V̇e/V̇o2 and V̇e/V̇co2), partial pressures of oxygen (PaO2), carbon dioxide (PaCO2), pHa, and oxygen content (CaO2) during progressive hypothermia in ecto- and endothermic Tammar wallabies. We also measured the same variables in the well-studied endotherm, the Sprague-Dawley rat. Hypothermia was induced in unrestrained, unanesthetized joeys and rats by progressively dropping the ambient temperature (Ta). Rats were additionally exposed to helox (80% helium, 20% oxygen) to facilitate heat loss. Respiratory, metabolic, and blood-gas variables were measured over a large body temperature (Tb) range (∼15–16°C in both species). Ectothermic joeys displayed limited thermogenic ability during cooling: after an initial plateau, V̇o2 decreased with the progressive drop in Tb. The Tb of endothermic joeys and rats fell despite V̇o2 nearly doubling with the initiation of cold stress. In all three groups the changes in V̇o2 were met by changes in V̇e, resulting in constant V̇e/V̇o2 and V̇e/V̇co2, blood gases, and pHa. Thus, although thermogenic capability was nearly absent in ectothermic joeys, blood acid-base regulation was similar to endothermic joeys and rats. This suggests that unlike some reptiles, unanesthetized mammals protect arterial blood pH with changing Tb, irrespective of their thermogenic ability and/or stage of development.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An exposé of Frappellian Motion;Journal of Comparative Physiology B;2021-09-14

2. Editorial: Untangling the oxygen transport cascade: a tribute to Peter Frappell (Frapps);Journal of Comparative Physiology B;2021-08-31

3. pH regulation in hibernation: Implications for ventilatory and metabolic control;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2019-11

4. Invited review: Development of acid-base regulation in vertebrates;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2019-10

5. Macropod Pediatric Medicine;Fowler's Zoo and Wild Animal Medicine Current Therapy, Volume 9;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3