Effects of unilateral lesions of retrotrapezoid nucleus on breathing in awake rats

Author:

Akilesh Manjapra R.1,Kamper Matthew2,Li Aihua2,Nattie Eugene E.2

Affiliation:

1. Department of Pediatrics, Dartmouth-Hitchcock Medical Center, and

2. Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03765

Abstract

Akilesh, Manjapra R., Matthew Kamper, Aihua Li, and Eugene E. Nattie. Effects of unilateral lesions of retrotrapezoid nucleus on breathing in awake rats. J. Appl. Physiol. 82(2): 469–479, 1997.—In anesthetized rats, unilateral retrotrapezoid nucleus (RTN) lesions markedly decreased baseline phrenic activity and the response to CO2 (E. E. Nattie and A. Li. Respir. Physiol. 97: 63–77, 1994). Here we evaluate the effects of such lesions on resting breathing and on the response to hypercapnia and hypoxia in unanesthetized awake rats. We made unilateral injections [24 ± 7 (SE) nl] of ibotenic acid (IA; 50 mM), an excitatory amino acid neurotoxin, in the RTN region ( n = 7) located by stereotaxic coordinates and by field potentials induced by facial nerve stimulation. Controls ( n = 6) received RTN injections (80 ± 30 nl) of mock cerebrospinal fluid. A second control consisted of four animals with IA injections (24 ± 12 nl) outside the RTN region. Injected fluorescent beads allowed anatomic identification of lesion location. Using whole body plethysmography, we measured ventilation in the awake state during room air, 7% CO2 in air, and 10% O2 breathing before and for 3 wk after the RTN injections. There was no statistically significant effect of the IA injections on resting room air breathing in the lesion group compared with the control groups. We observed no apnea. The response to 7% CO2 in the lesion group compared with the control groups was significantly decreased, by 39% on average, for the final portion of the 3-wk study period. There was no lesion effect on the ventilatory response to 10% O2. In this unanesthetized model, other areas suppressed by anesthesia, e.g., the reticular activating system, hypothalamus, and perhaps the contralateral RTN, may provide tonic input to the respiratory centers that counters the loss of RTN activity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3