Changes in whole tissue heme concentration dissociates muscle deoxygenation from muscle oxygen extraction during passive head-up tilt

Author:

Adami Alessandra1,Koga Shunsaku2,Kondo Narihiko3,Cannon Daniel T.1,Kowalchuk John M.4,Amano Tatsuro3,Rossiter Harry B.1ORCID

Affiliation:

1. Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California;

2. Applied Physiology Laboratory, Kobe Design University, Kobe, Japan;

3. Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan; and

4. School of Kinesiology and Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada

Abstract

Skeletal muscle deoxygenated hemoglobin and myoglobin concentration ([HHb]), assessed by near-infrared spectroscopy (NIRS), is commonly used as a surrogate of regional O2 extraction (reflecting the O2 delivery-to-consumption ratio, Q̇/V̇o2). However, [HHb] change (Δ[HHb]) is also influenced by capillary-venous heme concentration, and/or small blood vessel volume (reflected in total heme; [THb]). We tested the hypotheses that Δ[HHb] is associated with O2 extraction, and insensitive to [THb], over a wide range of Q̇/V̇o2 elicited by passive head-up tilt (HUT; 10-min, 15° increments, between −10° and 75°). Steady-state common femoral artery blood flow (FBF) was measured by echo-Doppler, and time-resolved NIRS measured [HHb] and [THb] of vastus lateralis (VL) and gastrocnemius (GS) in 13 men. EMG confirmed muscles were inactive. During HUT in VL [HHb] increased linearly (57 ± 10 to 101 ± 16 μM; P < 0.05 above 15°) and was associated ( r2 ∼ 0.80) with the reduction in FBF (618 ± 75 ml/min at 0° to 268 ± 52 ml/min at 75°; P < 0.05 above 30°) and the increase in [THb] (228 ± 30 vs. 252 ± 32 μM; P < 0.05 above 15°). GS response was qualitatively similar to VL. However, there was wide variation within and among individuals, such that the overall limits of agreement between Δ[HHb] and ΔFBF ranged from −35 to +19% across both muscles. Neither knowledge of tissue O2 saturation nor vascular compliance could appropriately account for the Δ[HHb]-ΔFBF dissociation. Thus, under passive tilt, [HHb] is influenced by Q̇/V̇o2, as well as microvascular hematocrit and/or tissue blood vessel volume, complicating its use as a noninvasive surrogate for muscle microvascular O2 extraction.

Funder

Biotechnology and Biological Sciences Research Council (BBSRC)

Japan Society for the Promotion of Science

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3