Prior exercise speeds pulmonary O2 uptake kinetics by increases in both local muscle O2 availability and O2 utilization

Author:

DeLorey Darren S.,Kowalchuk John M.,Heenan Aaron P.,duManoir Gregory R.,Paterson Donald H.

Abstract

The effect of prior exercise on pulmonary O2 uptake (V̇o2p), leg blood flow (LBF), and muscle deoxygenation at the onset of heavy-intensity alternate-leg knee-extension (KE) exercise was examined. Seven subjects [27 ( 5 ) yr; mean (SD)] performed step transitions ( n = 3; 8 min) from passive KE following no warm-up (HVY 1) and heavy-intensity (Δ50%, 8 min; HVY 2) KE exercise. V̇o2p was measured breath-by-breath; LBF was measured by Doppler ultrasound at the femoral artery; and oxy (O2Hb)-, deoxy (HHb)-, and total (Hbtot) hemoglobin/myoglobin of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS; Hamamatsu NIRO-300). Phase 2 V̇o2p, LBF, and HHb data were fit with a monoexponential model. The time delay (TD) from exercise onset to an increase in HHb was also determined and an HHb effective time constant (HHb − MRT = TD + τ) was calculated. Prior heavy-intensity exercise resulted in a speeding ( P < 0.05) of phase 2 V̇o2p kinetics [HVY 1: 42 s ( 6 ); HVY 2: 37 s ( 8 )], with no change in the phase 2 amplitude [HVY 1: 1.43 l/min (0.21); HVY 2: 1.48 l/min (0.21)] or amplitude of the V̇o2p slow component [HVY 1: 0.18 l/min (0.08); HVY 2: 0.18 l/min (0.09)]. O2Hb and Hbtot were elevated throughout the on-transient following prior heavy-intensity exercise. The τLBF [HVY 1: 39 s ( 7 ); HVY 2: 47 s ( 21 ); P = 0.48] and HHb-MRT [HVY 1: 23 s ( 4 ); HVY 2: 21 s ( 7 ); P = 0.63] were unaffected by prior exercise. However, the increase in HHb [HVY 1: 21 μM ( 10 ); HVY 2: 25 μM ( 10 ); P < 0.001] and the HHb-to-V̇o2p ratio [(HHb/V̇o2p) HVY 1: 14 μM·l−1·min−1 ( 6 ); HVY 2: 17 μM·l−1·min−1 ( 5 ); P < 0.05] were greater following prior heavy-intensity exercise. These results suggest that the speeding of phase 2 τV̇o2p was the result of both elevated local O2 availability and greater O2 extraction evidenced by the greater HHb amplitude and HHb/V̇o2p ratio following prior heavy-intensity exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3