Sarcolipin overexpression improves muscle energetics and reduces fatigue

Author:

Sopariwala Danesh H.1,Pant Meghna1,Shaikh Sana A.1,Goonasekera Sanjeewa A.2,Molkentin Jeffery D.23,Weisleder Noah1,Ma Jianjie4,Pan Zui4,Periasamy Muthu14

Affiliation:

1. Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;

2. Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio;

3. Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio

4. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio;

Abstract

Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression ( Sln OE) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that Sln OE mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that Sln OE EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and Sln OE EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in Sln OE EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from Sln OE mice fatigued significantly less than WT muscles. Interestingly, Sln OE muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in Sln OE EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of Sln OE compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics.

Funder

HHS | National Institutes of Health (NIH)

American Diabetes Association (ADA)

American Heart Association (AHA)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3