Muscle K+, Na+, and Cl− disturbances and Na+-K+ pump inactivation: implications for fatigue

Author:

McKenna Michael J.,Bangsbo Jens,Renaud Jean-Marc

Abstract

Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K+ efflux and Na+ and Cl influx, causing pronounced perturbations in extracellular (interstitial) and intracellular K+ and Na+ concentrations. Muscle interstitial K+ concentration may increase 1- to 2-fold to 11–13 mM and intracellular K+ concentration fall by 1.3- to 1.7-fold; interstitial Na+ concentration may decline by 10 mM and intracellular Na+ concentration rise by 1.5- to 2.0-fold. Muscle Cl concentration changes reported with muscle contractions are less consistent, with reports of both unchanged and increased intracellular Cl concentrations, depending on contraction type and the muscles studied. When considered together, these ionic changes depolarize sarcolemmal and t-tubular membranes to depress tetanic force and are thus likely to contribute to fatigue. Interestingly, less severe local ionic changes can also augment subtetanic force, suggesting that they may potentiate muscle contractility early in exercise. Increased Na+-K+-ATPase activity during exercise stabilizes Na+ and K+ concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na+-K+ pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3