Author:
Aughey R. J.,Gore C. J.,Hahn A. G.,Garnham A. P.,Clark S. A.,Petersen A. C.,Roberts A. D.,McKenna M. J.
Abstract
Athletes commonly attempt to enhance performance by training in normoxia but sleeping in hypoxia [live high and train low (LHTL)]. However, chronic hypoxia reduces muscle Na+-K+-ATPase content, whereas fatiguing contractions reduce Na+-K+-ATPase activity, which each may impair performance. We examined whether LHTL and intense exercise would decrease muscle Na+-K+-ATPase activity and whether these effects would be additive and sufficient to impair performance or plasma K+regulation. Thirteen subjects were randomly assigned to two fitness-matched groups, LHTL ( n = 6) or control (Con, n = 7). LHTL slept at simulated moderate altitude (3,000 m, inspired O2fraction = 15.48%) for 23 nights and lived and trained by day under normoxic conditions in Canberra (altitude ∼600 m). Con lived, trained, and slept in normoxia. A standardized incremental exercise test was conducted before and after LHTL. A vastus lateralis muscle biopsy was taken at rest and after exercise, before and after LHTL or Con, and analyzed for maximal Na+-K+-ATPase activity [K+-stimulated 3- O-methylfluorescein phosphatase (3- O-MFPase)] and Na+-K+-ATPase content ([3H]ouabain binding sites). 3- O-MFPase activity was decreased by −2.9 ± 2.6% in LHTL ( P < 0.05) and was depressed immediately after exercise ( P < 0.05) similarly in Con and LHTL (−13.0 ± 3.2 and −11.8 ± 1.5%, respectively). Plasma K+concentration during exercise was unchanged by LHTL; [3H]ouabain binding was unchanged with LHTL or exercise. Peak oxygen consumption was reduced in LHTL ( P < 0.05) but not in Con, whereas exercise work was unchanged in either group. Thus LHTL had a minor effect on, and incremental exercise reduced, Na+-K+-ATPase activity. However, the small LHTL-induced depression of 3- O-MFPase activity was insufficient to adversely affect either K+regulation or total work performed.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献