Chronic intermittent hypoxia and incremental cycling exercise independently depress muscle in vitro maximal Na+-K+-ATPase activity in well-trained athletes

Author:

Aughey R. J.,Gore C. J.,Hahn A. G.,Garnham A. P.,Clark S. A.,Petersen A. C.,Roberts A. D.,McKenna M. J.

Abstract

Athletes commonly attempt to enhance performance by training in normoxia but sleeping in hypoxia [live high and train low (LHTL)]. However, chronic hypoxia reduces muscle Na+-K+-ATPase content, whereas fatiguing contractions reduce Na+-K+-ATPase activity, which each may impair performance. We examined whether LHTL and intense exercise would decrease muscle Na+-K+-ATPase activity and whether these effects would be additive and sufficient to impair performance or plasma K+regulation. Thirteen subjects were randomly assigned to two fitness-matched groups, LHTL ( n = 6) or control (Con, n = 7). LHTL slept at simulated moderate altitude (3,000 m, inspired O2fraction = 15.48%) for 23 nights and lived and trained by day under normoxic conditions in Canberra (altitude ∼600 m). Con lived, trained, and slept in normoxia. A standardized incremental exercise test was conducted before and after LHTL. A vastus lateralis muscle biopsy was taken at rest and after exercise, before and after LHTL or Con, and analyzed for maximal Na+-K+-ATPase activity [K+-stimulated 3- O-methylfluorescein phosphatase (3- O-MFPase)] and Na+-K+-ATPase content ([3H]ouabain binding sites). 3- O-MFPase activity was decreased by −2.9 ± 2.6% in LHTL ( P < 0.05) and was depressed immediately after exercise ( P < 0.05) similarly in Con and LHTL (−13.0 ± 3.2 and −11.8 ± 1.5%, respectively). Plasma K+concentration during exercise was unchanged by LHTL; [3H]ouabain binding was unchanged with LHTL or exercise. Peak oxygen consumption was reduced in LHTL ( P < 0.05) but not in Con, whereas exercise work was unchanged in either group. Thus LHTL had a minor effect on, and incremental exercise reduced, Na+-K+-ATPase activity. However, the small LHTL-induced depression of 3- O-MFPase activity was insufficient to adversely affect either K+regulation or total work performed.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3