Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake

Author:

De Bock K.,Derave W.,Eijnde B. O.,Hesselink M. K.,Koninckx E.,Rose A. J.,Schrauwen P.,Bonen A.,Richter E. A.,Hespel P.

Abstract

Skeletal muscle gene response to exercise depends on nutritional status during and after exercise, but it is unknown whether muscle adaptations to endurance training are affected by nutritional status during training sessions. Therefore, this study investigated the effect of an endurance training program (6 wk, 3 day/wk, 1–2 h, 75% of peak V̇o2) in moderately active males. They trained in the fasted (F; n = 10) or carbohydrate-fed state (CHO; n = 10) while receiving a standardized diet [65 percent of total energy intake (En) from carbohydrates, 20%En fat, 15%En protein]. Before and after the training period, substrate use during a 2-h exercise bout was determined. During these experimental sessions, all subjects were in a fed condition and received extra carbohydrates (1 g·kg body wt−1 ·h−1). Peak V̇o2 (+7%), succinate dehydrogenase activity, GLUT4, and hexokinase II content were similarly increased between F and CHO. Fatty acid binding protein (FABPm) content increased significantly in F ( P = 0.007). Intramyocellular triglyceride content (IMCL) remained unchanged in both groups. After training, pre-exercise glycogen content was higher in CHO (545 ± 19 mmol/kg dry wt; P = 0.02), but not in F (434 ± 32 mmol/kg dry wt; P = 0.23). For a given initial glycogen content, F blunted exercise-induced glycogen breakdown when compared with CHO ( P = 0.04). Neither IMCL breakdown ( P = 0.23) nor fat oxidation rates during exercise were altered by training. Thus short-term training elicits similar adaptations in peak V̇o2 whether carried out in the fasted or carbohydrate-fed state. Although there was a decrease in exercise-induced glycogen breakdown and an increase in proteins involved in fat handling after fasting training, fat oxidation during exercise with carbohydrate intake was not changed.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3