Skeletal muscle morphology and contractile function in relation to muscle denervation in diabetic neuropathy

Author:

Allen Matti D.1,Major Brendan1,Kimpinski Kurt2,Doherty Timothy J.123,Rice Charles L.14

Affiliation:

1. School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada;

2. Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada;

3. Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; and

4. Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada

Abstract

The objective of the study was to assess the effects of diabetic polyneuropathy (DPN) on muscle contractile properties in humans, and how these changes are related to alterations in muscle morphology and denervation. Patients with DPN ( n = 12) were compared with age- and sex-matched controls ( n = 12). Evoked and voluntary contractile properties, including stimulated twitch responses and maximal voluntary contractions, of the dorsiflexor muscles were assessed using an isometric ankle dynamometer. Motor unit number estimates (MUNE) of the tibialis anterior (TA) were performed via quantitative electromyography and decomposition-enhanced spike-triggered averaging. Peak tibialis anterior (TA) cross-sectional area (CSA; cm2), and relative proportion of contractile to noncontractile tissue (%) was determined from magnetic resonance images. Patients with DPN demonstrated decreased strength (−35%) and slower (−45%) dorsiflexion contractile properties for both evoked and voluntary contractions ( P < 0.05). These findings were not accounted for by differences in voluntary activation ( P > 0.05) or antagonist coactivation ( P > 0.05). Additionally, patients with DPN were weaker when strength was normalized to TA total CSA (−30%; P < 0.05) or contractile tissue CSA (−26%; P < 0.05). In the DPN patient group, TA MUNEs were negatively related to both % noncontractile tissue ( P < 0.05; r = 0.72) and twitch half-relaxation time ( P < 0.05; r = 0.60), whereas no relationships were found between these variables in controls ( P > 0.05). We conclude that patients with DPN demonstrated reduced strength and muscle quality as well as contractile slowing. This process may contribute to muscle power loss and functional impairments reported in patients with DPN, beyond the loss of strength commonly observed.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3