Dose–Response Effect of an Inertia Flywheel Postactivation Performance Enhancement Protocol on Countermovement Jump Performance

Author:

Hall Keegan B.12ORCID,Immink Maarten A.13ORCID,Martin David T.4ORCID,Bennett Hunter12ORCID,Crowther Robert G.124ORCID

Affiliation:

1. UniSA: Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia

2. Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia

3. Sport, Health, Activity, Performance and Exercise Research Centre and College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia

4. School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia

Abstract

The purpose of this study was to investigate the dose–response effect of a high-load, 6-repetition, maximum effort inertial flywheel (IFw) squat postactivation performance enhancement (PAPE) protocol on countermovement jump (CMJ) performance metrics. Thirteen subjects completed 5 squat testing sessions: 1 session to determine back-squat 6-repetition maximum, 1 session to determine 6-repetition maximum IFw load, and 3 sessions to investigate the dose–response effect of an IFw PAPE protocol set at the load determined in the second session. In the IFw PAPE sessions, subjects completed either 1, 2, or 3 sets of IFw squats, then performed 5 CMJs over 12 minutes (1, 3, 6, 9, and 12 min post-IFw). All CMJ tests were conducted on a force platform where CMJ performance outcomes and impulse variables were calculated. There was no main time or volume effect for jump height, contact time, reactive strength index, peak force, or any of the impulse variables. A main time effect was identified for flight time (P = .006, effect size = 0.24) and peak power (P = .001, effect size = 0.28). The lack of change in jump height may indicate that too much fatigue was generated following this near-maximal IFw squat protocol, thereby reducing the PAPE effect.

Publisher

Human Kinetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3