Dynamic nonlinearity of lung tissue: effects of strain amplitude and stress level

Author:

Pinart Mariona1,Faffe Débora S.2,Sapiña Marta1,Romero Pablo V.1

Affiliation:

1. Laboratory of Experimental Pneumology, IDIBELL, L'Hospitalet, Barcelona, Spain;

2. Laboratory of Respiration Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Abstract

Lung tissue presents substantial nonlinear phenomena not accounted for by linear models; however, nonlinear approaches are less available. Our aim was to characterize the behavior of total harmonic distortion, an index of nonlinearity, in lung tissue strips under sinusoidal deformation at a single frequency as a function of strain amplitude and operational stress. To that end, lung parenchymal strips from healthy rats ( n = 6) were subjected to sinusoidal deformation (1 Hz) at different strain amplitudes (Δε = 4, 8, 12, 16, and 20%) and operating stresses (σop = 6, 8, 10, 12, 14, and 16 hPa). Additional rats ( n = 9) were intratracheally instilled with saline or bleomycin (2.5 U/kg, 3 times 1 wk apart), killed 28 days after the last instillation, and their lung tissue strips were studied at 5 and 10 hPa σop and 5% Δε. In both cases, harmonic distortion (HD%) of input (strain) and output (stress) signals were determined. In healthy strips, HD% increased linearly with Δε, stress amplitude, and minimum stress by cycle variations, but showed no significant change with σop levels. A prediction model could be determined as a function of operational stress and stress amplitude. Harmonic distortion was significantly increased in bleomycin-treated strips compared with controls and showed positive correlation with E behavior in both normal and diseased strips. We concluded that HD% can be useful as a single and simple parameter of lung tissue nonlinearity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3