Affiliation:
1. Laboratory of Experimental Pneumology, IDIBELL, L'Hospitalet, Barcelona, Spain;
2. Laboratory of Respiration Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
Abstract
Lung tissue presents substantial nonlinear phenomena not accounted for by linear models; however, nonlinear approaches are less available. Our aim was to characterize the behavior of total harmonic distortion, an index of nonlinearity, in lung tissue strips under sinusoidal deformation at a single frequency as a function of strain amplitude and operational stress. To that end, lung parenchymal strips from healthy rats ( n = 6) were subjected to sinusoidal deformation (1 Hz) at different strain amplitudes (Δε = 4, 8, 12, 16, and 20%) and operating stresses (σop = 6, 8, 10, 12, 14, and 16 hPa). Additional rats ( n = 9) were intratracheally instilled with saline or bleomycin (2.5 U/kg, 3 times 1 wk apart), killed 28 days after the last instillation, and their lung tissue strips were studied at 5 and 10 hPa σop and 5% Δε. In both cases, harmonic distortion (HD%) of input (strain) and output (stress) signals were determined. In healthy strips, HD% increased linearly with Δε, stress amplitude, and minimum stress by cycle variations, but showed no significant change with σop levels. A prediction model could be determined as a function of operational stress and stress amplitude. Harmonic distortion was significantly increased in bleomycin-treated strips compared with controls and showed positive correlation with E behavior in both normal and diseased strips. We concluded that HD% can be useful as a single and simple parameter of lung tissue nonlinearity.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献