Effects of ambient pressure on pulmonary nitric oxide

Author:

Hemmingsson Tryggve E.12,Linnarsson Dag1,Frostell Claes1,Van Muylem Alain3,Kerckx Yannick4,Gustafsson Lars E.1

Affiliation:

1. Department of Physiology and Pharmacology, Karolinska Institutet;

2. Department of Radiology, Karolinska University Hospital, Stockholm, Sweden;

3. Chest Department, Erasme University Hospital; and

4. Biomedical Physics Laboratory, Université Libre de Bruxelles, Brussels, Belgium

Abstract

Airway nitric oxide (NO) has been proposed to play a role in the development of high-altitude pulmonary edema. We undertook a study of the effects of acute changes of ambient pressure on exhaled and alveolar NO in the range 0.5–4 atmospheres absolute (ATA, 379–3,040 mmHg) in eight healthy subjects breathing normoxic nitrogen-oxygen mixtures. On the basis of previous work with inhalation of low-density helium-oxygen gas, we expected facilitated backdiffusion and lowered exhaled NO at 0.5 ATA and the opposite at 4 ATA. Instead, the exhaled NO partial pressure (PeNO) did not differ between pressures and averaged 1.21 ± 0.16 (SE) mPa across pressures. As a consequence, exhaled NO fractions varied inversely with pressure. Alveolar estimates of the NO partial pressure differed between pressures and averaged 88 ( P = 0.04) and 176 ( P = 0.009) percent of control (1 ATA) at 0.5 and 4 ATA, respectively. The airway contribution to exhaled NO was reduced to 79% of control ( P = 0.009) at 4 ATA. Our finding of the same PeNO at 0.5 and 1 ATA is at variance with previous findings of a reduced PeNO with inhalation of low-density gas at normal pressure, and this discrepancy may be due to the much longer durations of low-density gas breathing in the present study compared with previous studies with helium-oxygen breathing. The present data are compatible with the notion of an enhanced convective backtransport of NO, compensating for attenuated backdiffusion of NO with increasing pressure. An alternative interpretation is a pressure-induced suppression of NO formation in the airways.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3