Time course and mechanisms of adaptations in cardiorespiratory fitness with endurance training in older and young men

Author:

Murias Juan M.12,Kowalchuk John M.123,Paterson Donald H.12

Affiliation:

1. Canadian Centre for Activity and Aging,

2. School of Kinesiology, and

3. Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada

Abstract

The time-course and mechanisms of adaptation of cardiorespiratory fitness were examined in 8 older (O) (68 ± 7 yr old) and 8 young (Y) (23 ± 5 yr old) men pretraining and at 3, 6, 9, and 12 wk of training. Training was performed on a cycle ergometer three times per week for 45 min at ∼70% of maximal oxygen uptake (V̇o2 max). V̇o2 max increased within 3 wk with further increases observed posttraining in both O (+31%) and Y (+18%), ( P < 0.05). Maximal cardiac output (Q̇max, open-circuit acetylene) and stroke volume were higher in O and Y after 3 wk with further increases after 9 wk of training ( P < 0.05). Maximal arterial-venous oxygen difference (a-vO2diff) was higher at weeks 3 and 6 and posttraining compared with pretraining in O and Y ( P < 0.05). In O, ∼69% of the increase in V̇o2 max from pre- to posttraining was explained by an increased Q̇max with the remaining ∼31% explained by a widened a-vO2diff. This proportion of Q̇ and a-vO2diff contributions to the increase in V̇o2 max was consistent throughout testing in O. In Y, 56% of the pre- to posttraining increase in V̇o2 max was attributed to a greater Q̇max and 44% to a widened a-vO2diff. Early adaptations (first 3 wk) mainly relied on a widened maximal a-vO2diff (∼66%) whereas further increases in V̇o2 max were exclusively explained by a greater Q̇max. In conclusion, with short-term training O and Y significantly increased their V̇o2 max; however, the proportion of V̇o2 max increase explained by Q̇max and maximal a-vO2diff throughout training showed a different pattern by age group.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3