Alterations in exhaled breath metabolite-mixtures in two rat models of lipopolysaccharide-induced lung injury

Author:

Bos Lieuwe D. J.1234,van Walree Inez C.13,Kolk Arend H. J.4,Janssen Hans-Gerd4,Sterk Peter J.2,Schultz Marcus J.13

Affiliation:

1. Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands;

2. Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands;

3. Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and

4. Analytical Chemistry & Forensic Science, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Exhaled breath contains information on systemic and pulmonary metabolism, which may provide a monitoring tool for the development of lung injury. We aimed to determine the effect of intravenous (iv) and intratracheal (IT) lipopolysaccharide (LPS) challenge on the exhaled mixture of volatile metabolites and to assess the similarities between these two models. Male adult Sprague-Dawley rats were anesthetized, tracheotomized, and ventilated for 6 h. Lung injury was induced by iv or IT administration of LPS. Exhaled breath was monitored continuously using an electronic nose (eNose), and hourly using gas chromatography and mass spectrometry (GC-MS). GC-MS analysis identified 34 and 14 potential biological markers for lung injury in the iv and IT LPS models, respectively. These volatile biomarkers could be used to discriminate between LPS-challenged rats and control animals within 1 h after LPS administration. Electronic nose analysis resulted in a good separation 3 h after the LPS challenge. Hexanal, pentadecane and 6,10-dimethyl-5,9-undecadien-2-one concentrations decreased after both iv and IT LPS administration. Nonanoic acid was found in a higher concentration in exhaled breath after LPS inoculation into the trachea but in a lower concentration after iv infusion. LPS-induced lung injury rapidly changes exhaled breath metabolite mixtures in two animal models of lung injury. Changes partly overlap between an iv and an IT LPS challenge. This warrants testing the diagnostic accuracy of exhaled breath analysis for acute respiratory distress syndrome in clinical trials, possibly focusing on biological markers described in this study.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3