Changes of breath volatile organic compounds in healthy volunteers following segmental and inhalation endotoxin challenge

Author:

Holz OlafORCID,van Vorstenbosch RobertORCID,Guenther Frank,Schuchardt Sven,Trinkmann FrederikORCID,van Schooten Frederik-Jan,Smolinska AgnieszkaORCID,Hohlfeld Jens MORCID

Abstract

Abstract It is still unclear how airway inflammation affects the breath volatile organic compounds (VOCs) profile in exhaled air. We therefore analyzed breath following well-defined pulmonary endotoxin (lipopolysaccharide, LPS) challenges. Breath was collected from ten healthy non-smoking subjects at eight time points before and after segmental and whole lung LPS inhalation challenge. Four Tenax-TA® adsorption tubes were simultaneously loaded from an aluminum reservoir cylinder and independently analyzed by two research groups using gas chromatography—mass spectrometry. Airway inflammation was assessed in bronchoalveolar lavage (BAL) and in sputum after segmental and inhaled LPS challenge, respectively. Segmental LPS challenge significantly increased the median (interquartile range, IQR) percentage of neutrophils in BAL from 3.0 (4.2) % to 64.0 (7.3) %. The inhalation challenge increased sputum neutrophils from 33.9 (26.8) % to 78.3 (13.5) %. We observed increases in breath aldehydes at both time points after segmental and inhaled LPS challenge. These results were confirmed by an independent laboratory. The longitudinal breath analysis also revealed distinct VOC patterns related to environmental exposures, clinical procedures, and to metabolic changes after food intake. Changes in breath aldehydes suggest a relationship to LPS induced inflammation compatible with lipid peroxidation processes within the lung. Findings from our longitudinal data highlight the need for future studies to better consider the potential impact of the multiple VOCs from detergents, hygiene or lifestyle products a subject is continuously exposed to. We suspect that this very individual ‘owncloud’ exposure is contributing to an increased variability of breath aldehydes, which might limit a use as inflammatory markers in daily clinical practice.

Funder

Deutsches Zentrum für Lungenforschung

KWF Dutch Cancer Society

Publisher

IOP Publishing

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3