AltitudeOmics: on the consequences of high-altitude acclimatization for the development of fatigue during locomotor exercise in humans

Author:

Amann Markus1,Goodall Stuart2,Twomey Rosie3,Subudhi Andrew W.45,Lovering Andrew T.6,Roach Robert C.4

Affiliation:

1. Department of Medicine, University of Utah, Salt Lake City, Utah;

2. Faculty of Health and Life Sciences, Northumbria University, Newcastle, United Kingdom;

3. School of Sport and Service Management, University of Brighton, Eastbourne, United Kingdom;

4. Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado;

5. Department of Biology, University of Colorado, Colorado Springs, Colorado; and

6. Department of Human Physiology, University of Oregon, Eugene, Oregon

Abstract

The development of muscle fatigue is oxygen (O2)-delivery sensitive [arterial O2 content (CaO2) × limb blood flow ( QL)]. Locomotor exercise in acute hypoxia (AH) is, compared with sea level (SL), associated with reduced CaO2 and exaggerated inspiratory muscle work (Winsp), which impairs QL, both of which exacerbate fatigue individually by compromising O2 delivery. Since chronic hypoxia (CH) normalizes CaO2 but exacerbates Winsp, we investigated the consequences of a 14-day exposure to high altitude on exercise-induced locomotor muscle fatigue. Eight subjects performed the identical constant-load cycling exercise (138 ± 14 W; 11 ± 1 min) at SL (partial pressure of inspired O2, 147.1 ± 0.5 Torr), in AH (73.8 ± 0.2 Torr), and in CH (75.7 ± 0.1 Torr). Peripheral fatigue was expressed as pre- to postexercise percent reduction in electrically evoked potentiated quadriceps twitch force (ΔQtw,pot). Central fatigue was expressed as the exercise-induced percent decrease in voluntary muscle activation (ΔVA). Resting CaO2 at SL and CH was similar, but CaO2 in AH was lower compared with SL and CH (17.3 ± 0.5, 19.3 ± 0.7, 20.3 ± 1.3 ml O2/dl, respectively). Winsp during exercise increased with acclimatization (SL: 387 ± 36, AH: 503 ± 53, CH: 608 ± 67 cmH2O·s−1·min−1; P < 0.01). Exercise at SL did not induce central or peripheral fatigue. ΔQtw,pot was significant but similar in AH and CH (21 ± 2% and 19 ± 3%; P = 0.24). ΔVA was significant in both hypoxic conditions but smaller in CH vs. AH (4 ± 1% vs. 8 ± 2%; P < 0.05). In conclusion, acclimatization to severe altitude does not attenuate the substantial impact of hypoxia on the development of peripheral fatigue. In contrast, acclimatization attenuates, but does not eliminate, the exacerbation of central fatigue associated with exercise in severe AH.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3