Periodicity, time constants of drainage, and the mechanical determinants of peak cardiac output during exercise

Author:

Magder Sheldon1,Famulari Gabriel1,Gariepy Brian1

Affiliation:

1. McGill University Health Centre, Department of Critical Care and Department of Physiology, Montreal, Quebec, Canada

Abstract

To analyze mechanical adaptations that must occur in the cardiovascular system to reach the high cardiac outputs known to occur at peak aerobic performance, we adapted a computational model of the circulation by adding a second parallel venous compartment as proposed by August Krogh in 1912. One venous compartment has a large compliance and slow time constant of emptying; it is representative of the splanchnic circulation. The other has a low compliance and fast time constant of emptying and is representative of muscle beds. Fractional distribution between the two compartments is an important determinant of cardiac output. Parameters in the model were based on values from animal and human studies normalized to a 70 kg male. The baseline cardiac output was set at 5 L/min, and we aimed for 25 L/min at peak exercise with a fractional flow to the peripheral-muscle region of 90%. Finally, we added the equivalent of a muscle pump. Adjustments in circuit and cardiac parameters alone increased cardiac output to only 15.6 L/min because volume accumulated in the muscle compartment and limited a higher cardiac output. Addition of muscle contractions decompressed the muscle region and allowed cardiac output to increase to 23.4 L/min. The pulsatility of blood flow imposes important constraints on the adaptations of cardiac and circulatory functions because it fixes the times for filling and emptying. Flow is further limited by the limits of cardiac filling on each beat. Muscle contractions play a key role by decompressing volume that would otherwise accumulate in the muscle vasculature and by decreasing the time for stroke return to the right ventricle. NEW & NOTEWORTHY We used a computational model of the circulation and previous human and animal data to model mechanical changes in the heart and circulation that are needed to reach the known high cardiac output at peak aerobic exercise. Key points are that time constants of drainage of circulatory compartments put limits on peak flow in a pulsatile system. Muscle contractions increase the rate of return to the heart and by doing so prevent accumulation of volume in the muscle compartment and greatly increase circulatory capacity.

Funder

None

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3