Potential role of vitamin D receptor gene polymorphism in determining bone phenotype in young male athletes

Author:

Nakamura Orie1,Ishii Tomoo2,Ando You3,Amagai Hitoshi4,Oto Masakazu3,Imafuji Takahiro3,Tokuyama Kumpei3

Affiliation:

1. Chubu National Hospital, Obu, Aichi 474-8511;

2. Institute of Clinical Medical Science, University of Tsukuba, Tsukuba, Ibaraki 305-0006;

3. Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8574; and

4. Tsukuba College of Medical Technology and Nursing, Tsukuba, Ibaraki 305-0006, Japan

Abstract

The genetic difference among individuals partly explains variance in adaptive response to exercise through gene-environment interaction. The aim of this cross-sectional study was to evaluate the role of the vitamin D receptor (VDR) gene polymorphism, which locates at the translation initiation site, in the adaptations of bone to long-term impact loading. The VDR genotypes, as detected by endonuclease FokI, and bone phenotypes of the lumbar spine and femoral neck were examined in 44 highly trained young male athletes and 44 age-matched nonathletic controls. As a whole, the athletes had a significantly higher bone mineral content resulting from a combination of increased volume and density at both sites than the controls. When the athletes were compared with the controls within each VDR genotype, however, the increased spinal volume was found only in the athletes with the FF but not in those with the Ff genotype(“F” for the absence of the endonuclease Fok I restriction site and “f” for its presence). Differences in bone mineral content in the lumbar spine and femoral neck between the controls and the athletes were greater in subjects with FF than those with Ff. Our results suggest a gene-environment interaction in that the bone phenotypes in individuals with FF adapt to impact loading by producing stronger bone structure than those with the Ff do.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3