Bone mineral density in high-level endurance runners: Part B—genotype-dependent characteristics

Author:

Herbert A. J.ORCID,Williams A. G.,Lockey S. J.,Erskine R. M.,Sale C.,Hennis P. J.,Day S. H.,Stebbings G. K.

Abstract

Abstract Purpose Inter-individual variability in bone mineral density (BMD) exists within and between endurance runners and non-athletes, probably in part due to differing genetic profiles. Certainty is lacking, however, regarding which genetic variants may contribute to BMD in endurance runners and if specific genotypes are sensitive to environmental factors, such as mechanical loading via training. Method Ten single-nucleotide polymorphisms (SNPs) were identified from previous genome-wide and/or candidate gene association studies that have a functional effect on bone physiology. The aims of this study were to investigate (1) associations between genotype at those 10 SNPs and bone phenotypes in high-level endurance runners, and (2) interactions between genotype and athlete status on bone phenotypes. Results Female runners with P2RX7 rs3751143 AA genotype had 4% higher total-body BMD and 5% higher leg BMD than AC + CC genotypes. Male runners with WNT16 rs3801387 AA genotype had 14% lower lumbar spine BMD than AA genotype non-athletes, whilst AG + GG genotype runners also had 5% higher leg BMD than AG + GG genotype non-athletes. Conclusion We report novel associations between P2RX7 rs3751143 genotype and BMD in female runners, whilst differences in BMD between male runners and non-athletes with the same WNT16 rs3801387 genotype existed, highlighting a potential genetic interaction with factors common in endurance runners, such as high levels of mechanical loading. These findings contribute to our knowledge of the genetic associations with BMD and improve our understanding of why some runners have lower BMD than others.

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Public Health, Environmental and Occupational Health,Orthopedics and Sports Medicine,General Medicine,Public Health, Environmental and Occupational Health,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3