Regulation of regional cerebral blood flow during graded reflex-mediated sympathetic activation via lower body negative pressure

Author:

Kaur Jasdeep1,Vranish Jennifer R.1,Barbosa Thales C.1ORCID,Washio Takuro2,Young Benjamin E.1,Stephens Brandi Y.1,Brothers R. Matthew1,Ogoh Shigehiko2,Fadel Paul J.1

Affiliation:

1. Department of Kinesiology, University of Texas at Arlington, Arlington, Texas

2. Department of Biomedical Engineering, Toyo University, Kawagoe-shi, Japan

Abstract

The role of the sympathetic nervous system in cerebral blood flow (CBF) regulation remains unclear. Previous studies have primarily measured middle cerebral artery blood velocity to assess CBF. Recently, there has been a transition toward measuring internal carotid artery (ICA) and vertebral artery (VA) blood flow using duplex Doppler ultrasound. Given that the VA supplies autonomic control centers in the brainstem, we hypothesized that graded sympathetic activation via lower body negative pressure (LBNP) would reduce ICA but not VA blood flow. ICA and VA blood flow were measured during two protocols: protocol 1, low-to-moderate LBNP (−10, −20, −30, and −40 Torr) and protocol 2, moderate-to-high LBNP (−30, −50, and −70 Torr). ICA and VA blood flow, diameter, and blood velocity were unaffected up to −40 LBNP. However, −50 and −70 LBNP evoked reductions in ICA and VA blood flow [e.g., −70 LBNP: percent change (%∆)VA-baseline = −27.6 ± 3.0] that were mediated by decreases in both diameter and velocity (e.g., −70 LBNP: %∆VA-baseline diameter = −7.5 ± 1.9 and %∆VA-baseline velocity = −13.6 ± 1.7), which were comparable between vessels. Since hyperventilation during −70 LBNP reduced end-tidal pressure of carbon dioxide ([Formula: see text]), this decrease in [Formula: see text] was matched via voluntary hyperventilation. Reductions in ICA and VA blood flow during hyperventilation alone were significantly smaller than during −70 LBNP and were primarily mediated by decreases in velocity (%∆VA-baseline velocity = −8.6 ± 2.4 and %∆VA-baseline diameter = −0.05 ± 0.56). These data demonstrate that both ICA and VA were unaffected by low-to-moderate sympathetic activation, whereas robust reflex-mediated sympathoexcitation caused similar magnitudes of vasoconstriction in both arteries. Thus, contrary to our hypothesis, the ICA was not preferentially vasoconstricted by sympathetic activation. NEW & NOTEWORTHY Our study demonstrates that moderate-to-high reflex-mediated sympathetic activation with lower body negative pressure (LBNP) decreases internal carotid artery and vertebral artery blood flow via reductions in both vessel diameter and blood velocity. This vasoconstriction was primarily sympathetically mediated as voluntary hyperventilation alone, to isolate the effect of decreases in end-tidal pressure of carbon dioxide that occurred during LBNP, resulted in a significantly smaller vasoconstriction. In contrast to our hypothesis, these data indicate a lack of heterogeneity between the anterior and posterior cerebral circulations in response to sympathoexcitation.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3