Induced pluripotent stem cell-derived endothelial cells attenuate lipopolysaccharide-induced acute lung injury

Author:

Xing Dongqi1,Wells J. Michael12,Giordano Samantha S.3,Feng Wenguang4,Gaggar Amit12,Yan Jie5,Hage Fadi G.32,Li Li36,Chen Yiu-Fai3,Oparil Suzanne3

Affiliation:

1. Division of Pulmonary, Allergy & Critical Care Medicine, Lung Health Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama

2. Birmingham Veterans Affairs Medical Center, Birmingham, Alabama

3. Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama

4. Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama

5. Department of Pathology, University of New Mexico, Albuquerque, New Mexico

6. Department of Physiology, School of Medicine, Shihezi University, Xinjiang, China

Abstract

The chemokine receptors CXCR1/2 and CCR2/5 play a critical role in neutrophil and monocyte recruitment to sites of injury and/or inflammation. Neutrophil-mediated inflammation and endothelial cell (EC) injury are unifying factors in the pathogenesis of the acute respiratory distress syndrome. This study tested the hypothesis that systemic administration of rat-induced pluripotent stem cell (iPS)-derived ECs (iPS-ECs) overexpressing CXCR1/2 or CCR2/5 attenuates lipopolysaccharide (LPS)-induced acute lung injury. Rat iPS-ECs were transduced with adenovirus containing cDNA of CXCR1/2 or CCR2/5. Ovariectomized Sprague-Dawley rats (10 wk old) received intraperitoneal injection of LPS and intravenous infusion of 1) saline vehicle, 2) AdNull-iPS-ECs (iPS-ECs transduced with empty adenoviral vector), 3) CXCR1/2-iPS-ECs (iPS-ECs overexpressing CXCR1/2), or 4) CCR2/5-iPS-ECs (iPS-ECs overexpressing CCR2/5) at 2 h post-LPS. Rats receiving intraperitoneal injection of saline served as sham controls. Later (4 h), proinflammatory cytokine/chemokine mRNA and protein levels were measured in total lung homogenates by real-time RT-PCR and Luminex multiplex assays, and neutrophil and macrophage infiltration in alveoli was measured by immunohistochemical staining. Pulmonary microvascular permeability was assessed by the Evans blue technique, and pulmonary edema was estimated by wet-to-dry lung weight ratios. Albumin levels and neutrophil counts were assessed in bronchoalveolar lavage fluid at 24 h post-LPS. Both CXCR1/2-iPS-ECs and CCR2/5-iPS-ECs significantly reduced LPS-induced proinflammatory mediator expression, neutrophil and macrophage infiltration, pulmonary edema, and vascular permeability compared with controls. These provocative findings provide strong evidence that targeted delivery of iPS-ECs overexpressing CXCR1/2 or CCR2/5 prevents LPS-induced acute lung injury. NEW & NOTEWORTHY We have developed a novel approach to address neutrophil-mediated inflammation and endothelial damage by targeted delivery of rat-induced pluripotent stem cell (iPS)-derived endothelial cell (ECs)overexpressing chemokine receptors CXCR1/2 and CCR2/5 in injured lung tissue in a model of acute lung injury. We have demonstrated that intravenously transfused CXCR1/2-iPS-ECs and CCR2/5-iPS-ECs are recruited to lipopolysaccharide-injured lungs and attenuate lipopolysaccharide-induced parenchymal lung injury responses, including inflammatory mediator expression, inflammatory cell infiltration, and vascular leakage compared with controls.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

AHA

VA

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3