Strain differences in response to acute hypoxia: CD-1 versus C57BL/6J mice

Author:

Zwemer Charles F.,Song Michael Y.,Carello Katari A.,D'Alecy Louis G.

Abstract

Some mammals respond to hypoxia by lowering metabolic demand for oxygen and others by maximizing efficiency of oxygen usage: the former strategy is generally held to be the more effective. We describe within the same species one outbred strain (CD-1) that lowers demand and another inbred strain (C57BL/6J) that maximizes oxygen efficiency to markedly extend hypoxic tolerance. Unanesthetized adult male mice ( Mus musculus, CD-1 and C57BL/6J) between 20 and 35 g were used. Sham-conditioned (SC) C57BL/6J mice survived severe hypoxia (4.5% O2, balance N2) roughly twice as long as SC CD-1 mice (median 211 and 93.5 s, respectively; P < 0.0001). Following acute hypoxic conditioning (HC), C57BL/6J mice survived subsequent hypoxia 10 times longer than HC CD-1 mice (median 2,198 and 238 s respectively; P < 0.0001). Therefore, C57BL/6J mice are both naturally more tolerant to hypoxia and show a greater increase in hypoxic tolerance in response to hypoxic conditioning. Indirect calorimetry indicates that CD-1 mice lower mass-specific oxygen consumption (V̇′o2 in ml O2·kg−1·min−1) and carbon dioxide production (V̇′co2 in ml CO2·kg−1·min−1) in response to HC ( P = 0.002 and P < 0.0001, respectively), but C57BL/6J mice maintain V̇′o2 and V̇′co2 after HC. Respiratory exchange ratio and fluorometric assay of plasma ketones suggest that C57BL/6J mice rapidly switch to ketone metabolism, a more efficient substrate, while CD-1 mice reduce overall metabolic activity. We conclude that under severe hypoxia in mice, switching fuel, possibly to ketones, while maintaining V̇′o2, may confer a greater survival advantage than simply lowering demand.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3