Epigenetics and cytoprotection with heat acclimation

Author:

Horowitz Michal1

Affiliation:

1. Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel

Abstract

Studying “phenotypic plasticity” involves comparison of traits expressed in response to environmental fluctuations and aims to understand tolerance and survival in new settings. Reversible phenotypic changes that enable individuals to match their phenotype to environmental demands throughout life can be artificially induced, i.e., acclimation or occur naturally, i.e., acclimatization. The onset and achievement of acclimatory homeostasis are determined by molecular programs that induce the acclimated transcriptome. In heat acclimation, much evidence suggests that epigenetic mechanisms are powerful players in these processes. Epigenetic mechanisms affect the accessibility of the DNA to transcription factors, thereby regulating gene expression and controlling the phenotype. The heat-acclimated phenotype confers cytoprotection against novel stressors via cross-tolerance mechanisms, by attenuation of the initial damage and/or by accelerating spontaneous recovery through the release of help signals. This indispensable acclimatory feature has a memory and can be rapidly reestablished after the loss of acclimation and the return to the physiological preacclimated phenotype. The transcriptional landscape of the deacclimated phenotype includes constitutive transcriptional activation of epigenetic bookmarks. Heat shock protein (HSP) 70/HSP90/heat shock factor 1 memory protocol demonstrated constitutive histone H4 acetylation on hsp70 and hsp90 promotors. Novel players in the heat acclimation setup are poly(ADP-ribose)ribose polymerase 1 affecting chromatin condensation, DNA linker histones from the histone H1 cluster, and transcription factors associated with the P38 pathway. We suggest that these orchestrated responses maintain euchromatin and proteostasis during deacclimation and predispose to rapid reacclimation and cytoprotection. These mechanisms represent within-life epigenetic adaptations and cytoprotective memory.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3