Dynamic changes in global and gene specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus

Author:

Alvarado Sebastian12,Mak Timothy1,Liu Sara1,Storey Kenneth B.3,Szyf Moshe1

Affiliation:

1. Department of Pharmacology, McGill University. 3655 Sir William Osler Suite 1309 H3G 1Y6, Montreal Quebec, Canada; Sackler program in Epigenetics and Psychobiology at McGill University

2. Present Address: Department of Biology, Stanford University, 371 Serra Mall Rm 314 94305 Palo Alto CA, USA

3. Institute of Biochemistry and Department of Biology, Carleton University. 1125 Colonel By Drive. K1S 5B6 Ottawa Ontario, Canada

Abstract

Hibernating mammals conserve energy in the winter by undergoing prolonged bouts of torpor, interspersed with brief arousals back to euthermia. These bouts are accompanied with a suite of reversible physiological and biochemical changes; however, much remains to be discovered about the molecular mechanisms involved. Given the seasonal nature of hibernation, it stands to reason that underlying plastic epigenetic mechanisms should exist. One such form of epigenomic regulation involves the reversible modification of cytosine bases in DNA by methylation. DNA methylation is well-known to be a mechanism that confers upon DNA its cellular identity during differentiation in response to innate developmental cues. However, it has recently been hypothesized that DNA methylation also acts as a mechanism for adapting genome function to changing external environmental and experiential signals over different time scales, including during adulthood. Here, we tested the hypothesis that DNA methylation is altered during hibernation in adult wild animals. This study evaluated global changes in DNA methylation in response to hibernation in the liver and skeletal muscle of thirteen-lined ground squirrels along with changes in expression of DNA methyltransferases (DNMT1/3B) and methyl binding domain proteins (MBDs). A reduction in global DNA methylation occurred in muscle during torpor phases whereas significant changes in DNMTs and MBDs were seen in both tissues. We also report dynamic changes in DNA methylation in the promoter of the myocyte enhancer factor 2C (mef2c) gene, a candidate regulator of metabolism in skeletal muscle. Taken together, these data show that genomic DNA methylation is dynamic across torpor-arousal bouts during winter hibernation, consistent with a role for this regulatory mechanism in contributing to the hibernation phenotype.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3