Acute l-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance

Author:

Bailey Stephen J.1,Winyard Paul G.2,Vanhatalo Anni1,Blackwell Jamie R.1,DiMenna Fred J.1,Wilkerson Daryl P.1,Jones Andrew M.1

Affiliation:

1. School of Sport and Health Sciences and

2. Peninsula College of Medicine and Dentistry, St. Luke's Campus, University of Exeter, Exeter, United Kingdom

Abstract

It has recently been reported that dietary nitrate (NO3) supplementation, which increases plasma nitrite (NO2) concentration, a biomarker of nitric oxide (NO) availability, improves exercise efficiency and exercise tolerance in healthy humans. We hypothesized that dietary supplementation with l-arginine, the substrate for NO synthase (NOS), would elicit similar responses. In a double-blind, crossover study, nine healthy men (aged 19–38 yr) consumed 500 ml of a beverage containing 6 g of l-arginine (Arg) or a placebo beverage (PL) and completed a series of “step” moderate- and severe-intensity exercise bouts 1 h after ingestion of the beverage. Plasma NO2 concentration was significantly greater in the Arg than the PL group (331 ± 198 vs. 159 ± 102 nM, P < 0.05) and systolic blood pressure was significantly reduced (123 ± 3 vs. 131 ± 5 mmHg, P < 0.01). The steady-state O2 uptake (V̇o2) during moderate-intensity exercise was reduced by 7% in the Arg group (1.48 ± 0.12 vs. 1.59 ± 0.14 l/min, P < 0.05). During severe-intensity exercise, the V̇o2 slow component amplitude was reduced (0.58 ± 0.23 and 0.76 ± 0.29 l/min in Arg and PL, respectively, P < 0.05) and the time to exhaustion was extended (707 ± 232 and 562 ± 145 s in Arg and PL, respectively, P < 0.05) following consumption of Arg. In conclusion, similar to the effects of increased dietary NO3 intake, elevating NO bioavailability through dietary l-Arg supplementation reduced the O2 cost of moderate-intensity exercise and blunted the V̇o2 slow component and extended the time to exhaustion during severe-intensity exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3