Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans

Author:

Bailey Stephen J.,Wilkerson Daryl P.,DiMenna Fred J.,Jones Andrew M.

Abstract

We hypothesized that a short-term training program involving repeated all-out sprint training (RST) would be more effective than work-matched, low-intensity endurance training (ET) in enhancing the kinetics of oxygen uptake (V̇o2) and muscle deoxygenation {deoxyhemoglobin concentration ([HHb])} following the onset of exercise. Twenty-four recreationally active subjects (15 men, mean ± SD: age 21 ± 4 yr, height 173 ± 9 cm, body mass 71 ± 11 kg) were allocated to one of three groups: RST, which completed six sessions of four to seven 30-s RSTs; ET, which completed six sessions of work-matched, moderate-intensity cycling; and a control group (CON). All subjects completed moderate-intensity and severe-intensity “step” exercise transitions before (Pre) and after the 2-wk intervention period (Post). Following RST, [HHb] kinetics were speeded, and the amplitude of the [HHb] response was increased during both moderate and severe exercise ( P < 0.05); the phase II V̇o2 kinetics were accelerated for both moderate (Pre: 28 ± 8, Post: 21 ± 8 s; P < 0.01) and severe (Pre: 29 ± 5, Post: 23 ± 5 s; P < 0.05) exercise; the amplitude of the V̇o2 slow component was reduced (Pre: 0.52 ± 0.19, Post: 0.40 ± 0.17 l/min; P < 0.01); and exercise tolerance during severe exercise was improved by 53% (Pre: 700 ± 234, Post: 1,074 ± 431 s; P < 0.01). None of these parameters was significantly altered in the ET and CON groups. Six sessions of RST, but not ET, resulted in changes in [HHb] kinetics consistent with enhanced fractional muscle O2 extraction, faster V̇o2 kinetics, and an increased tolerance to high-intensity exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3