Affiliation:
1. Department of Health and Exercise Science, Colorado State University, Ft. Collins, Colorado
Abstract
Despite the popularity of walking as a form of physical activity for obese individuals, relatively little is known about how obesity affects the metabolic rate, economy, and underlying mechanical energetics of walking across a range of speeds and grades. The purpose of this study was to quantify metabolic rate, stride kinematics, and external mechanical work during level and gradient walking in obese and nonobese adults. Thirty-two obese [18 women, mass = 102.1 (15.6) kg, BMI = 33.9 (3.6) kg/m2; mean (SD)] and 19 nonobese [10 women, mass = 64.4 (10.6) kg, BMI = 21.6 (2.0) kg/m2] volunteers participated in this study. We measured oxygen consumption, ground reaction forces, and lower extremity kinematics while subjects walked on a dual-belt force-measuring treadmill at 11 speeds/grades (0.50–1.75 m/s, −3° to +9°). We calculated metabolic rate, stride kinematics, and external work. Net metabolic rate (Ėnet/kg, W/kg) increased with speed or grade across all individuals. Surprisingly and in contrast with previous studies, Ėnet/kgwas 0–6% less in obese compared with nonobese adults ( P = 0.013). External work, although a primary determinant of Ėnet/kg, was not affected by obesity across the range of speeds/grades used in this study. We also developed new prediction equations to estimate oxygen consumption and Ėnet/kgand found that Ėnet/kgwas positively related to relative leg mass and step width and negatively related to double support duration. These results suggest that obesity does not impair walking economy across a range of walking speeds and grades.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献