The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay

Author:

Debold Edward P.1,Longyear Thomas J.1,Turner Matthew A.1

Affiliation:

1. Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts

Abstract

Muscle fatigue from intense contractile activity is thought to result, in large part, from the accumulation of inorganic phosphate (Pi) and hydrogen ions (H+) acting to directly inhibit the function of the contractile proteins; however, the molecular basis of this process remain unclear. We used an in vitro motility assay and determined the effects of elevated H+and Pion the ability of myosin to bind to and translocate regulated actin filaments (RTF) to gain novel insights into the molecular basis of fatigue. At saturating Ca++, acidosis depressed regulated filament velocity ( VRTF) by ∼90% (6.2 ± 0.3 vs. 0.5 ± 0.2 μm/s at pH 7.4 and 6.5, respectively). However, the addition of 30 mM Picaused VRTFto increase fivefold, from 0.5 ± 0.2 to 2.6 ± 0.3 μm/s at pH 6.5. Similarly, at all subsaturating Ca++levels, acidosis slowed VRTF, but the addition of Pisignificantly attenuated this effect. We also manipulated the [ADP] in addition to the [Pi] to probe which specific step(s) of cross-bridge cycle of myosin is affected by elevated H+. The findings are consistent with acidosis slowing the isomerization step between two actomyosin ADP-bound states. Because the state before this isomerization is most vulnerable to Pirebinding, and the associated detachment from actin, this finding may also explain the Pi-induced enhancement of VRTFat low pH. These results therefore may provide a molecular basis for a significant portion of the loss of shortening velocity and possibly muscular power during fatigue.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3