Muscle fatigue, bioenergetic responses and metabolic economy during load‐ and velocity‐based maximal dynamic contractions in young and older adults

Author:

Fitzgerald Liam F.1ORCID,Bartlett Miles F.1ORCID,Kent Jane A.1ORCID

Affiliation:

1. Muscle Physiology Laboratory, Department of Kinesiology University of Massachusetts Amherst Massachusetts USA

Abstract

AbstractWe evaluated whether task‐dependent, age‐related differences in muscle fatigue (contraction‐induced decline in normalized power) develop from differences in bioenergetics or metabolic economy (ME; mass‐normalized work/mM ATP). We used magnetic resonance spectroscopy to quantify intracellular metabolites in vastus lateralis muscle of 10 young and 10 older adults during two maximal‐effort, 4‐min isotonic (20% maximal torque) and isokinetic (120°s−1) contraction protocols. Fatigue, inorganic phosphate (Pi), and pH (p ≥ 0.213) differed by age during isotonic contractions. However, older had less fatigue (p ≤ 0.011) and metabolic perturbation (lower [Pi], greater pH; p ≤ 0.031) than young during isokinetic contractions. ME was lower in older than young during isotonic contractions (p ≤ 0.003), but not associated with fatigue in either protocol or group. Rather, fatigue during both tasks was linearly related to changes in [H+], in both groups. The slope of fatigue versus [H+] was 50% lower in older than young during isokinetic contractions (p ≤ 0.023), consistent with less fatigue in older during this protocol. Overall, regardless of age or task type, acidosis, but not ME, was the primary mechanism for fatigue in vivo. The source of the age‐related differences in contraction‐induced acidosis in vivo remains to be determined, as does the apparent task‐dependent difference in the sensitivity of muscle to [H+].

Funder

American College of Sports Medicine

Publisher

Wiley

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3