Decompression to altitude: assumptions, experimental evidence, and future directions

Author:

Foster Philip P.,Butler Bruce D.

Abstract

Although differences exist, hypobaric and hyperbaric exposures share common physiological, biochemical, and clinical features, and their comparison may provide further insight into the mechanisms of decompression stress. Although altitude decompression illness (DCI) has been experienced by high-altitude Air Force pilots and is common in ground-based experiments simulating decompression profiles of extravehicular activities (EVAs) or astronauts' space walks, no case has been reported during actual EVAs in the non-weight-bearing microgravity environment of orbital space missions. We are uncertain whether gravity influences decompression outcomes via nitrogen tissue washout or via alterations related to skeletal muscle activity. However, robust experimental evidence demonstrated the role of skeletal muscle exercise, activities, and/or movement in bubble formation and DCI occurrence. Dualism of effects of exercise, positive or negative, on bubble formation and DCI is a striking feature in hypobaric exposure. Therefore, the discussion and the structure of this review are centered on those highlighted unresolved topics about the relationship between muscle activity, decompression, and microgravity. This article also provides, in the context of altitude decompression, an overview of the role of denitrogenation, metabolic gases, gas micronuclei, stabilization of bubbles, biochemical pathways activated by bubbles, nitric oxide, oxygen, anthropometric or physiological variables, Doppler-detectable bubbles, and potential arterialization of bubbles. These findings and uncertainties will produce further physiological challenges to solve in order to line up for the programmed human return to the Moon, the preparation for human exploration of Mars, and the EVAs implementation in a non-zero gravity environment.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference149 articles.

1. Quantification of damage by air emboli to lung microvessels in anesthetized sheep

2. Allen TH, Maio DA, Bancroft RW. Body fat, denitrogenation and decompression sickness in men exercising after abrupt exposure to altitude. Aerospace Med 42: 518–524, 1971.

3. Space-cabin and suit pressures for avoidance of decompression sickness and alleviation of fire hazard.

4. Anderson D, Nagasawa G, Norfleet W, Olszowka A, Lundgren C. O2 pressures between 0.12 and 25 atm abs, circulatory function, and N2 elimination. Undersea Biomed Res 18: 279–292, 1991.

5. Hyperbaric oxygen may reduce gas bubbles in decompressed prawns by eliminating gas nuclei

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3