High-altitude decompression strain can be reduced by an early excursion to moderate altitude while breathing oxygen

Author:

Ånell RickardORCID,Grönkvist Mikael,Gennser Mikael,Eiken Ola

Abstract

AbstractRecent observations suggest that development of venous gas emboli (VGE) during high-altitude flying whilst breathing hyperoxic gas will be reduced by intermittent excursions to moderate altitude. The present study aimed to investigate if an early, single excursion from high to moderate altitude can be used as an in-flight means to reduce high-altitude decompression strain. Ten healthy men were investigated whilst breathing oxygen in a hypobaric chamber under two conditions, once during a 90-min continuous exposure to a simulated cabin altitude of 24,000 ft (High; H) and once during 10 min at 24,000 ft, followed by 30 min at 15,000 ft and by 80 min at 24,000 ft (high–low–high; H–L–H). VGE scores were assessed by cardiac ultrasound, using a 6-graded scale. In H, VGE increased throughout the course of the sojourn at 24,000 ft to attain peak value [median (range)] of 3 (2–4) at min 90, just prior to descent. In H–L–H, median VGE scores were 0 throughout the trial, except for at min 10, just prior to the excursion to 15,000 ft, whence the VGE score was 1.5 (0–3). Thus, an early, single excursion from high to moderate cabin altitude holds promise as an in-flight means to reduce the risk of altitude decompression sickness during long-duration high-altitude flying in aircraft with limited cabin pressurization. Presumably, such excursion acts by facilitating the gas exchange in decompression bubbles from a predomination of nitrogen to that of oxygen.

Funder

Swedish Armed Forces

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Public Health, Environmental and Occupational Health,Orthopedics and Sports Medicine,General Medicine,Public Health, Environmental and Occupational Health,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3