Expiratory muscle fatigue does not regulate operating lung volumes during high-intensity exercise in healthy humans

Author:

Taylor Bryan J.12,How Stephen C.3,Romer Lee M.1

Affiliation:

1. Centre for Sports Medicine and Human Performance, Brunel University, London, United Kingdom;

2. Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, New York; and

3. Exercise and Sport Research Centre, University of Gloucestershire, Gloucester, United Kingdom

Abstract

To determine whether expiratory muscle fatigue (EMF) is involved in regulating operating lung volumes during exercise, nine recreationally active subjects cycled at 90% of peak work rate to the limit of tolerance with prior induction of EMF (EMF-ex) and for a time equal to that achieved in EMF-ex without prior induction of EMF (ISO-ex). EMF was assessed by measuring changes in magnetically evoked gastric twitch pressure. Changes in end-expiratory and end-inspiratory lung volume (EELV and EILV) and the degree of expiratory flow limitation (EFL) were quantified using maximal expiratory flow-volume curves and inspiratory capacity maneuvers. Resistive breathing reduced gastric twitch pressure (−24 ± 14%, P = 0.004). During EMF-ex, EELV decreased from rest to the 3rd min of exercise [39 ± 8 vs. 27 ± 7% of forced vital capacity (FVC), P = 0.001] before increasing toward baseline (34 ± 8% of FVC end exercise, P = 0.073 vs. rest). EILV increased from rest to the 3rd min of exercise (54 ± 8 vs. 84 ± 9% of FVC, P = 0.006) and remained elevated to end exercise (88 ± 9% of FVC). Neither EELV ( P = 0.18) nor EILV ( P = 0.26) was different at any time point during EMF-ex vs. ISO-ex. Four subjects became expiratory flow limited during the final minute of EMF-ex and ISO-ex; the degree of EFL was not different between trials (37 ± 18 vs. 35 ± 16% of tidal volume, P = 0.38). At end exercise in both trials, EELV was greater in subjects without vs. subjects with EFL. These findings suggest that 1) contractile fatigue of the expiratory muscles in healthy humans does not regulate operating lung volumes during high-intensity sustained cycle exercise; and 2) factors other than “frank” EFL cause the terminal increase in EELV.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3